Abstract. Emission inventories for major reactive tropospheric CI species (particulate CI, HC1, C1NO2, CH3CI, CHCI3, CH3CCI3, C2C14, C2HC13, CH2C12, and CHCIF2) were integrated across source types (terrestrial biogenic and oceanic emissions, sea-salt production and dechlorination, biomass burning, industrial emissions, fossil-fuel combustion, and incineration). Composite emissions were compared with known sinks to assess budget closure; relative contributions of natural and anthropogenic sources were differentiated. Model calculations suggest that conventional acid-displacement reactions involving Sov)+O3, S(Iv)+ H202, and H2SO4 and HNO3 scavenging account for minor fractions of sea-salt dechlorination globally. Other important chemical pathways involving sea-salt aerosol apparently produce most volatile chlorine in the troposphere. The combined emissions of CH3CI from known sources account for about half of the modeled sink, suggesting fluxes from known sources were unde:estimated, the OH sink was overestimated, or significant unidentified sources exist. Anthropogenic activities (primarily biomass burning) contribute about half the net CH3CI emitted from known sources. Anthropogenic emissions account for only about 10% of the modeled CHCl3 sink. Although poorly constrained, significant fractions of tropospheric CH2C12 (25%), C2HC13 (10%), and C2C14 (5%) are emitted from the surface ocean; the combined contributions of C2C14 and C2HC13 from all natural sources may be substantially higher than the estimated oceanic flux.
Tg C1 yr -1 and 0.06 Tg C1 yr -1, respectively; virtually all in the Northern Hemisphere. Largest HC1 and C1NO2 fluxes occur in northern hemisphere winter due to high sea salt loading and elevated HNO3, SO2 and N205 concentrations. 70% of the HC1 dechlorination occurs on particles between 0.75 gm and 4 gm radius; C1NO2 volatilized from slightly larger particles. The aerosol pH of each particle size bin equilibrates towards the same value once the alkalinity has been titrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.