A bevy of recent reports have firmly established a mechanistic link between a histone posttranslational modification associated with DNA double-strand breaks and recruitment of chromatin-modifying activities. These papers show that in addition to providing signals for transcriptional regulation, specific histone "codes" can coordinate and target multiple activities involved in DNA repair.
We used a novel labeling technique in the naturally synchronous organism Physarum polycephalum to examine the fate of core histones in G2 phase. We find rapid exchange of H2A/H2B dimers with free pools that is greatly diminished by treatment of the cells with ␣-amanitin. This exchange is enhanced in pol II-coding sequences compared with extragenic regions or inactive loci. In contrast, H3/H4 tetramers exhibit far lower levels of exchange in the pol II-transcribed genes tested, suggesting that tetramer exchange occurs via a distinct mechanism. However, we find that transcribed regions of the ribosomal RNA gene loci exhibit rapid exchange of H3/H4 tetramers. Thus, our data show that the majority of the pol II transcription-dependent histone exchange is due to elongation in vivo rather than promoter remodeling or other pol II-dependent alterations in promoter structure and, in contrast to pol I, pol II transcription through nucleosomes in vivo causes facile exchange of both H2A/H2B dimers while allowing conservation of epigenetic "marks" and other post-translational modifications on H3 and H4.Supplemental material is available at http://www.genesdev.org.
This study examined the function of H3 and H4 tail domains in replication-dependent chromatin assembly. Results show distinct functions of H3 and H4 tails in nuclear import and chromatin assembly. Further investigations show that H4 diacetylation is essential but not sufficient for nuclear import, as preventing Hat1 binding impedes histone transport in nuclei.
Reconstitution of a DNA fragment containing a Xenopus borealis somatic type 5S rRNA gene into a nucleosome greatly restricts the binding of transcription factor IIIA (TFIIIA) to its cognate DNA sequence within the internal promoter of the gene. Removal of all core histone tail domains by limited trypsin proteolysis or acetylation of the core histone tails significantly relieves this inhibition and allows TFIIIA to exhibit highaffinity binding to nucleosomal DNA. Since only a single tail or a subset of tails may be primarily responsible for this effect, we determined whether removal of the individual tail domains of the H2A-H2B dimer or the H3-H4 tetramer affects TFIIIA binding to its cognate DNA site within the 5S nucleosome in vitro. The results show that the tail domains of H3 and H4, but not those of H2A and/or H2B, directly modulate the ability of TFIIIA to bind nucleosomal DNA. In vitro transcription assays carried out with nucleosomal templates lacking individual tail domains show that transcription efficiency parallels the binding of TFIIIA. In addition, we show that the stoichiometry of core histones within the 5S DNA-core histone-TFIIIA triple complex is not changed upon TFIIIA association. Thus, TFIIIA binding occurs by displacement of H2A-H2B-DNA contacts but without complete loss of the dimer from the nucleoprotein complex. These data, coupled with previous reports (M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.