Quantum teleportation of optical coherent states was demonstrated experimentally using squeezed-state entanglement. The quantum nature of the achieved teleportation was verified by the experimentally determined fidelity Fexp = 0.58 +/- 0.02, which describes the match between input and output states. A fidelity greater than 0.5 is not possible for coherent states without the use of entanglement. This is the first realization of unconditional quantum teleportation where every state entering the device is actually teleported.
We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even if the observers are allowed any sequence of local operations and classical communication between the separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted. This result implies the existence of separable superoperators that cannot be implemented locally. A set of states are found involving three two-state particles that also appear to be nonmeasurable locally. These and other multipartite states are classified according to the entropy and entanglement costs of preparing and measuring them by local operations. ͓S1050-2947͑99͒00302-9͔
This paper, mostly expository in nature, surveys four measures of distinguishability for quantum-mechanical states. This is done from the point of view of the cryptographer with a particular eye on applications in quantum cryptography. Each of the measures considered is rooted in an analogous classical measure of distinguishability for probability distributions: namely, the probability of an identification error, the Kolmogorov distance, the Bhattacharyya coefficient, and the Shannon distinguishability (as defined through mutual information). These measures have a long history of use in statistical pattern recognition and classical cryptography. We obtain several inequalities that relate the quantum distinguishability measures to each other, one of which may be crucial for proving the security of quantum cryptographic key distribution. In another vein, these measures and their connecting inequalities are used to define a single notion of cryptographic exponential indistinguishability for two families of quantum states. This is a tool that may prove useful in the analysis of various quantum cryptographic protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.