The metabolism of the amino acid L-tryptophan is a highly regulated physiological process leading to the generation of several neuroactive compounds within the central nervous system. These include the aminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT), products of the kynurenine pathway of tryptophan metabolism (including 3-hydroxykynurenine, 3-hydroxyanthranilic acid, quinolinic acid and kynurenic acid), the neurohormone melatonin, several neuroactive kynuramine metabolites of melatonin, and the trace amine tryptamine. The integral role of central serotonergic systems in the modulation of physiology and behaviour has been well documented since the first description of serotonergic neurons in the brain some 40 years ago. However, while the significance of the peripheral kynurenine pathway of tryptophan metabolism has also been recognised for several decades, it has only recently been appreciated that the synthesis of kynurenines within the central nervous system has important consequences for physiology and behaviour. Altered kynurenine metabolism has been implicated in the pathophysiology of conditions such as acquired immunodeficiency syndrome (AIDS)-related dementia, Huntington's disease and Alzheimer's disease. In this review we discuss the molecular mechanisms involved in regulating the metabolism of tryptophan and consider the medical implications associated with dysregulation of both serotonergic and kynurenine pathways of tryptophan metabolism.
The link between dysregulated serotonergic activity and depression and anxiety disorders is well established, yet the molecular mechanisms underlying these psychopathologies are not fully understood. Here, we explore the role of microRNAs in regulating serotonergic (5HT) neuron activity. To this end, we determined the specific microRNA "fingerprint" of 5HT neurons and identified a strong microRNA-target interaction between microRNA 135 (miR135), and both serotonin transporter and serotonin receptor-1a transcripts. Intriguingly, miR135a levels were upregulated after administration of antidepressants. Genetically modified mouse models, expressing higher or lower levels of miR135, demonstrated major alterations in anxiety- and depression-like behaviors, 5HT levels, and behavioral response to antidepressant treatment. Finally, miR135a levels in blood and brain of depressed human patients were significantly lower. The current results suggest a potential role for miR135 as an endogenous antidepressant and provide a venue for potential treatment and insights into the onset, susceptibility, and heterogeneity of stress-related psychopathologies.
A BSTRACT : Serotonergic systems play an important and generalized role in regulation of sleep-wake states and behavioral arousal. Recent in vivo electrophysiologic recording studies in animals suggest that several different subtypes of serotonergic neurons with unique behavioral correlates exist within the brainstem raphe nuclei, raising the possibility that topographically organized subpopulations of serotonergic neurons may have unique behavioral or physiologic correlates and unique functional properties. We have shown that the stress-related and anxiogenic neuropeptide corticotropin-releasing factor can stimulate the in vitro neuronal firing rates of topographically organized subpopulations of serotonergic neurons within the dorsal raphe nucleus (DR). These findings are consistent with a wealth of behavioral studies suggesting that serotonergic systems within the DR are involved in the modulation of ongoing anxiety-related behavior and in behavioral sensitization, a process whereby anxiety-and fear-related behavioral responses are sensitized for a period of up to 24 to 48 h. The dorsomedial subdivision of the DR, particularly its middle and caudal aspects, has attracted considerable attention as a region that may play a critical role in the regulation of acute and chronic anxiety states. Future studies aimed at characterization of the molecular and cellular properties of topographically organized subpopulations of serotonergic neurons are likely to lead to major advances in our understanding of the role of serotonergic systems in stress-related physiology and behavior.
Anxiety is a complex emotional state associated with sustained heightened autonomic and behavioral arousal and an increase in avoidance behavior. Anxiety-related behavior is a form of risk assessment behavior that is associated with a level of uncertainty or unpredictability regarding the outcome of emotionally salient events, often when both rewarding and aversive outcomes are possible. In this review, we highlight recent advances in our understanding of the neural circuits regulating anxiety states and anxiety-related behavior with an emphasis on the role of brainstem serotonergic systems in modulating anxiety-related circuits. In particular, we explore the possibility that the regulation of anxiety states and anxiety-related behavior by serotonergic systems is dependent on a specific, topographically organized mesolimbocortical serotonergic system that originates in the mid-rostrocaudal and caudal parts of the dorsal raphe nucleus.
Research has elucidated causal links between stress exposure and the development of anxiety disorders, but due to the limited use of female or sex-comparative animal models, little is known about the mechanisms underlying sex differences in those disorders. This is despite an overwhelming wealth of evidence from the clinical literature that the prevalence of anxiety disorders is about twice as high in women compared to men, in addition to gender differences in severity and treatment efficacy. We here review human gender differences in generalized anxiety disorder, panic disorder, posttraumatic stress disorder and anxiety-relevant biological functions, discuss the limitations of classic conflict anxiety tests to measure naturally occurring sex differences in anxiety-like behaviors, describe sex-dependent manifestation of anxiety states after gestational, neonatal, or adolescent stressors, and present animal models of chronic anxiety states induced by acute or chronic stressors during adulthood. Potential mechanisms underlying sex differences in stress-related anxiety states include emerging evidence supporting the existence of two anatomically and functionally distinct serotonergic circuits that are related to the modulation of conflict anxiety and panic-like anxiety, respectively. We discuss how these serotonergic circuits may be controlled by reproductive steroid hormone-dependent modulation of crfr1 and crfr2 expression in the midbrain dorsal raphe nucleus and by estrous stage-dependent alterations of γ-aminobutyric acid (GABAergic) neurotransmission in the periaqueductal gray, ultimately leading to sex differences in emotional behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.