The carbon nanotube−polyethylene glycol (PEG) graft copolymer was synthesized by covalent functionalization of electric arc single-walled carbon nanotubes (SWNTs) with the monofunctional, tetrahydrofurfuryl-terminated polyethylene glycol PEG-THFF (MW∼200), to give a material composed of 80 wt % SWNTs. We show that the sequential processing of the resulting material by ultrasonication and high-shear mixing provides a means to disperse the SWNT-PEG-THFF macromolecules on two different length scales and leads to highly viscous solutions; at a concentration of 10 mg/mL the kinematic viscosity (ν) of an aqueous SWNT-PEG-THFF dispersion reaches a value of ν > 1000 cSt (for water ν ∼ 1 cSt). Analysis of this procedure by means of viscosity measurements and atomic force microscopy (AFM), shows that ultrasonication is effective in disrupting the SWNT bundles, while the high shear mixing disperses the individual SWNTs. The kinematic viscosity of aqueous dispersions of SWNT-PEG-THFF was measured as a function of nanotube concentration and compared to that of SWNT-PEG dispersions. The viscosity and AFM measurements show that the SWNT-PEG-THFF and SWNT-PEG graft copolymers form aqueous dispersions with distinct viscous characteristics; the use of monofunctional PEG-THFF for covalent functionalization of the SWNTs prevents cross-linking of the SWNTs in the final product, and this allows the production of more completely dispersed SWNTs than in the case of the SWNT-PEG graft copolymer, which is synthesized from a bifunctional glycol.
A phosphine containing a 10-vertex carborane anion substituent and its subsequent ligation to a Rh(I) carbonyl complex is reported. The complex is characterized by NMR spectroscopy and a single crystal X-ray diffraction study. In addition, the inductive effects of both 10 and 12 vertex C-functionalized closo-carborane anions are elucidated via I.R. analysis of the CO stretching frequencies of two Rh carbonyl complexes. Unlike C-functionalized neutral o-carborane the 10 and 12-vertex carborane anions are both strong electron donor substituents.
A hybrid terphenyl/o-carborane ligand building block is synthesized by the reaction of m-terphenylalkyne with B10H14. This sterically demanding substituent can be installed into ligands, as demonstrated by the preparation of carboranylphosphine. The bulky phosphine reacts with [ClRh(CO)2]2 to produce monophosphine complex ClRhL(CO)2, which subsequently extrudes CO under vacuum to afford the dimeric species [ClRhL(CO)]2. The latter complex does not react with excess phosphine and is resistant toward cyclometalation, which is in contrast to related o-carborane phosphine complexes. Data from a single-crystal X-ray diffraction study are utilized to quantify the steric impact of the ligand via the percent buried volume approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.