Because of the existence of a shallow minimum in the interaction energy against particle separation diagram for neutral, sterically-stabilised particles, dispersions of such particles exhibit reversible flocculation above a threshold particle number concentration. The equilibrium state achieved is one
Sustained forward migration through a fibrillar extracellular matrix requires localization of protrusive signals. Contact with fibronectin at the tip of a cell protrusion activates Rac1, and for linear migration it is necessary to dampen Rac1 activity in off-axial positions and redistribute Rac1 from non-protrusive membrane to the leading edge. Here, we identify interactions between coronin-1C (Coro1C), RCC2 and Rac1 that focus active Rac1 to a single protrusion. Coro1C mediates release of inactive Rac1 from non-protrusive membrane and is necessary for Rac1 redistribution to a protrusive tip and fibronectin-dependent Rac1 activation. The second component, RCC2, attenuates Rac1 activation outside the protrusive tip by binding to the Rac1 switch regions and competitively inhibiting GEF action, thus preventing off-axial protrusion. Depletion of Coro1C or RCC2 by RNA interference causes loss of cell polarity that results in shunting migration in 1D or 3D culture systems. Furthermore, morpholinos against Coro1C or RCC2, or mutation of any of the binding sites in the Rac1–RCC2–Coro1C complex delays the arrival of neural crest derivatives at the correct location in developing zebrafish, demonstrating the crucial role in migration guidance in vivo.
Chronic skin-healing defects are one of the leading challenges to lifelong well-being, affecting 2-5% of populations. Chronic wound formation is linked to age and diabetes and frequently leads to major limb amputation. Here we identify a strategy to reverse fibroblast senescence and improve healing rates. In healthy skin, fibronectin activates Rac1 in fibroblasts, causing migration into the wound bed, and driving wound contraction. We discover that mechanical stimulation of the skin with ultrasound can overturn healing defects by activating a calcium/CamKinaseII/Tiam1/Rac1 pathway that substitutes for fibronectin-dependent signaling and promotes fibroblast migration. Treatment of diabetic and aged mice recruits fibroblasts to the wound bed and reduces healing times by 30%, restoring healing rates to those observed in young, healthy animals. Ultrasound treatment is equally effective in rescuing the healing defects of animals lacking fibronectin receptors, and can be blocked by pharmacological inhibition of the CamKinaseII pathway. Finally, we discover that the migration defects of fibroblasts from human venous leg ulcer patients can be reversed by ultrasound, demonstrating that the approach is applicable to human chronic samples. By demonstrating that this alternative Rac1 pathway can substitute for that normally operating in the skin, we identify future opportunities for management of chronic wounds.
Background: Directional migration requires removal of Rac1 from the back of the cell.Results: Coronin-1C and caveolin provide parallel pathways for constitutive recycling or fibronectin-inducible degradation of Rac1.Discussion: Redundant trafficking pathways facilitate polarity while migrating, and responsiveness to chemotactic gradients while stationary.Significance: Maintenance of polarized migration, when the chemotactic gradient has dissipated, is essential for wound healing over a period of days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.