Roads can act as barriers to animal movement through mortality during crossing attempts or behavioral avoidance. This barrier effect has negative demographic and genetic consequences that can ultimately result in local or regional extinction. Here we use radio-telemetry data on three terrestrial vertebrates (eastern massasauga Sistrurus catenatus, eastern box turtle Terrapene carolina and ornate box turtle Terrapene ornata) to test whether roads acted as barriers to movement. Specifically, we test whether individuals avoided crossing roads by comparing the number of observed crossings with the number of road crossings predicted by randomizations of individual movement paths. All species crossed roads significantly less often than predicted by chance, indicating strong road avoidance. Results of this study showing behavioral avoidance and previous studies on road mortality indicate that roads are strong barriers to these species. High mortality during crossing attempts would select for road avoidance, reducing the number of individuals killed on roads over time but leading to genetically partitioned subpopulations due to a lack of gene flow. In species that are long-lived and latematuring, negative genetic effects might not be observable over short time-scales, thus placing populations at high risk of extinction because of a failure to detect an incrementally worsening problem. Formulating successful management strategies for many species in decline will require integrating data on road mortality, animal behavior and population genetics in order to understand more clearly the barrier effect of roads.
The existence of clonally reproducing vertebrates has often served as a foil in attempts to explain the near-ubiquity of sexual reproduction in eukaryotes, but the absence of recombination, with its attendant limitation of new genotypes to those produced through mutations, restricts the adaptive ability of clonal organisms. It has been argued, therefore, that clonal vertebrate taxa have short lifespans. Variation in mitochondrial DNA (mtDNA) within clonal populations is interpreted instead as reflecting multiple, although limited, independent hybridization events. On the basis of an analysis of an average of 373 nucleotide pairs, we report here that the mtDNA of clonal, hybrid, gynogenetic mole salamanders (Ambystoma, Ambystomatidae) differs by 5% or more from mtDNA of their closest possible sexual relatives (A. jeffersonianum, A. laterale and A. texanum). Assuming usual rates of mtDNA divergence, these lineages have persisted for about 5 million years, far longer than estimated for other clonal vertebrate populations. The low mtDNA variability in the clonal lineages suggests that they have undergone population reductions during the Pleistocene.
Nonrandom associations of alleles or haplotypes with geographical location can arise from restricted gene flow, historical events (fragmentation, range expansion, colonization), or any mixture of these factors. In this paper, we show how a nested cladistic analysis of geographical distances can be used to test the null hypothesis of no geographical association of haplotypes, test the hypothesis that significant associations are due to restricted gene flow, and identify patterns of significant association that are due to historical events. In this last case, criteria are given to discriminate among contiguous range expansion, long-distance colonization, and population fragmentation. The ability to make these discriminations depends critically upon an adequate geographical sampling design. These points are illustrated with a worked example: mitochondrial DNA haplotypes in the salamander Ambystoma tigrinum. For this example, prior information exists about restricted gene flow and likely historical events, and the nested cladistic analyses were completely concordant with this prior information. This concordance establishes the plausibility of this nested cladistic approach, but much future work will be necessary to demonstrate robustness and to explore the power and accuracy of this procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.