The high affinity of antibodies produced during responses to T-cell-dependent antigens is associated with somatic mutation in the variable region of the immunoglobulin. Indirect evidence indicates that: (1) this arises by a process of hypermutation, acting selectively on rearranged immunoglobulin variable-region genes, which is activated in centroblasts within germinal centres; and (2) centrocytes, the progeny of centroblasts, undergo selection on the basis of their ability to receive a positive signal from antigen. We have now performed experiments analysing this selection process, and found that, on culture, centrocytes isolated from human tonsil kill themselves within a few hours by apoptosis. This is not a feature of other tonsillar B cells. Centrocytes can be prevented from entering apoptosis if they are activated both through their receptors for antigen and a surface glycoprotein recognized by CD40 antibodies.
The receptors found on most T lymphocytes bind to antigen presented on major histocompatibility complex proteins and consist of dimers of alpha- and beta-polypeptides associated with the invariant CD3 complex. A fully competent immune system requires a diverse array of T-cell antigen receptors (TCRs) with different specificities. This diversity is generated by rearrangement of TCR alpha- and beta-chain gene segments within the thymus where the receptors are first expressed. Any cells carrying self-reactive receptors must be eliminated, suppressed or inactivated so that destructive autoimmunity is avoided. Recently, compelling evidence has shown that one process involved in producing such self-tolerance is clonal deletion of autoreactive cells within the thymus by an as-yet-undefined mechanism. Here we show that engaging the CD3/TCR complex of immature mouse thymocytes with anti-CD3 antibodies produces DNA degradation and cell death through the endogenous pathway of apoptosis. Activation of this process in immature T cells by the binding of the TCR to self-antigens may therefore be the mechanism which produces clonal deletion and consequently self-tolerance.
The survival, differentiation, proliferation and development of haemopoietic precursor cells and the functional activity of mature blood cells are all influenced by colony stimulating factors (CSFs). As haemopoietic cells rapidly die in the absence of appropriate CSF, the promotion of cell survival mediated by CSFs, or growth factors, is fundamental to all the other effects exerted by these factors. This enhancement of cell survival is distinct from the stimulation of proliferation. Here we show that the death of haemopoietic precursor cells on withdrawal of the relevant CSF. is due to active cell death, or apoptosis, indicating that CSFs promote cell survival by suppression of the process of apoptosis. The existence of a positive control mechanism regulating precursor cell survival has important implications both for the regulation of normal haemopoiesis and for tumorigenesis.
Epstein-Barr virus (EBV), a human herpesvirus, establishes a persistent asymptomatic infection of the circulating B-lymphocyte pool. The mechanism of virus persistence is not understood but, given the limited lifespan of most B cells in vivo, it seems most likely that EBV-infected cells must gain access to the long-lived memory B-cell pool. Here we show in an in vitro system that EBV, through expression of the full set of eight virus-coded 'latent' proteins, can protect human B cells from programmed cell death (apoptosis), the deletion mechanism which normally restricts entry into memory. We have found that EBV-positive Burkitt's lymphoma (BL) cell clones retaining the original tumour cell phenotype and expressing only one of the virus latent proteins, the nuclear antigen EBNA 1, are extremely sensitive to apoptosis; in this respect they resemble the tumour's normal cell of origin found in the germinal centres of lymphoid tissue. By contrast, isogenic BL cell clones which have activated expression of all eight EBV latent proteins are resistant to the induction of apoptosis. The EBV latent proteins should therefore be seen not just as activators of B-cell proliferation but, perhaps more importantly, as mediators of enhanced B-cell survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.