Tn7-like transposons are pervasive mobile genetic elements in bacteria that mobilize using heteromeric transposase complexes comprising distinct targeting modules. We recently described a Tn7-like transposon from Vibrio cholerae that employs a Type I-F CRISPR-Cas system for RNA-guided transposition, in which Cascade directly recruits transposition proteins to integrate donor DNA downstream of genomic target sites complementary to CRISPR RNA. However, the requirement for multiple expression vectors and low overall integration efficiencies, particularly for large genetic payloads, hindered the practical utility of the transposon. Here, we present a significantly improved INTEGRATE (insertion of transposable elements by guide RNA-assisted targeting) system for targeted, multiplexed, and marker-free DNA integration of up to 10 kilobases at ~100% efficiency. Using multi-spacer CRISPR arrays, we achieved simultaneous multiplex insertions in three genomic loci, and facile multi-loci deletions when combining orthogonal integrases and recombinases. Finally, we demonstrated robust function in other biomedically- and industrially-relevant bacteria, and developed an accessible computational algorithm for guide RNA design. This work establishes INTEGRATE as a versatile and portable tool that enables multiplex and kilobase-scale genome engineering.
Bacterial transposons propagate through either non-replicative (cut-and-paste) or replicative (copy-and-paste) pathways, depending on how the mobile element is excised from its donor source. In the well-characterized E. coli transposon Tn7, a heteromeric TnsA-TnsB transposase directs cut-and-paste transposition by cleaving both strands at each transposon end during the excision step. Whether a similar pathway is involved for RNA-guided transposons, in which CRISPR-Cas systems confer DNA target specificity, has not been determined. Here, we apply long-read, population-based whole-genome sequencing (WGS) to unambiguously resolve transposition products for two evolutionarily distinct transposon types that employ either Cascade or Cas12k for RNA-guided DNA integration. Our results show that RNA-guided transposon systems lacking functional TnsA primarily undergo copy-and-paste transposition, generating cointegrate products that comprise duplicated transposon copies and genomic insertion of the vector backbone. Finally, we report natural and engineered transposon variants encoding a TnsAB fusion protein, revealing a novel strategy for achieving RNA-guided transposition with fewer molecular components.
Bacterial transposons propagate through either non-replicative (cut-and-paste) or replicative (copy-and-paste) pathways, depending on how the mobile element is excised from its donor source. In the well-characterized E. coli transposon Tn7, a heteromeric TnsA-TnsB transposase directs cut-and-paste transposition by cleaving both strands at each transposon end during the excision step. Whether a similar pathway is involved for RNA-guided transposons, in which CRISPR-Cas systems confer DNA target specificity, has not been determined. Here, we apply long-read, population-based whole-genome sequencing (WGS) to unambiguously resolve transposition products for two evolutionarily distinct transposon classes that employ either Cascade or Cas12k for RNA-guided DNA integration. Our results reveal that RNA-guided transposon systems lacking functional TnsA primarily generate cointegrate products containing genomically inserted vector backbones. Finally, we report natural and engineered transposon variants encoding a TnsAB fusion protein, revealing a novel strategy for achieving RNA-guided transposition with fewer molecular components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.