Recognition of facial expressions is critical to our appreciation of the social and physical environment, with separate emotions having distinct facial expressions. Perception of fearful facial expressions has been extensively studied, appearing to depend upon the amygdala. Disgust-literally 'bad taste'-is another important emotion, with a distinct evolutionary history, and is conveyed by a characteristic facial expression. We have used functional magnetic resonance imaging (fMRI) to examine the neural substrate for perceiving disgust expressions. Normal volunteers were presented with faces showing mild or strong disgust or fear. Cerebral activation in response to these stimuli was contrasted with that for neutral faces. Results for fear generally confirmed previous positron emission tomography findings of amygdala involvement. Both strong and mild expressions of disgust activated anterior insular cortex but not the amygdala; strong disgust also activated structures linked to a limbic cortico-striatal-thalamic circuit. The anterior insula is known to be involved in responses to offensive tastes. The neural response to facial expressions of disgust in others is thus closely related to appraisal of distasteful stimuli.
Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have con¢rmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological ¢ndings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate^putamen; vocal expressions of disgust did not signi¢cantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our ¢ndings therefore (i) support the di¡erential localization of the neural substrates of fear and disgust; (ii) con¢rm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) con¢rm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus.
The present study investigated the functional neuroanatomy of transient mood changes in response to Western classical music. In a pilot experiment, 53 healthy volunteers (mean age: 32.0; SD = 9.6) evaluated their emotional responses to 60 classical musical pieces using a visual analogue scale (VAS) ranging from 0 (sad) through 50 (neutral) to 100 (happy). Twenty pieces were found to accurately induce the intended emotional states with good reliability, consisting of 5 happy, 5 sad, and 10 emotionally unevocative, neutral musical pieces. In a subsequent functional magnetic resonance imaging (fMRI) study, the blood oxygenation level dependent (BOLD) signal contrast was measured in response to the mood state induced by each musical stimulus in a separate group of 16 healthy participants (mean age: 29.5; SD = 5.5). Mood state ratings during scanning were made by a VAS, which confirmed the emotional valence of the selected stimuli. Increased BOLD signal contrast during presentation of happy music was found in the ventral and dorsal striatum, anterior cingulate, parahippocampal gyrus, and auditory association areas. With sad music, increased BOLD signal responses were noted in the hippocampus/amygdala and auditory association areas. Presentation of neutral music was associated with increased BOLD signal responses in the insula and auditory association areas. Our findings suggest that an emotion processing network in response to music integrates the ventral and dorsal striatum, areas involved in reward experience and movement; the anterior cingulate, which is important for targeting attention; and medial temporal areas, traditionally found in the appraisal and processing of emotions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.