Currently, no methods exist for the definitive diagnosis of AD premortem. β-amyloid, the primary component of the senile plaques found in patients with this disease, is believed to play a role in its neurotoxicity. We are developing a nanoshell substrate, functionalized with sialic acid residues to mimic neuron cell surfaces, for the surface-enhanced Raman detection of β-amyloid. It is our hope that this sensing mechanism will be able to detect the toxic form of β-amyloid, with structural and concentration information, to aid in the diagnosis of AD and provide insight into the relationship between β-amyloid and disease progression. We have been successfully able to functionalize the nanoshells with the sialic acid residues to allow for the specific binding of β-amyloid to the substrate. We have also shown that a surface-enhanced Raman spectroscopy response using nanoshells is stable and concentrationdependent with detection into the picomolar range.
Abstractβ-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer's disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a crucial role in Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have hypothesized that the Aβ-membrane sialic acid interaction could be inhibited through use of a biomimic multivalent sialic acid compound that would compete with the cell surface for Aβ binding. To explore this hypothesis, we synthesized a series of photocrosslinked sialic acid containing oligosaccharides and tested their ability to bind Aβ and attenuate Aβ toxicity in cell culture assays. We show that a polymer prepared via the photocrosslinking of disialyllacto-N-tetraose (DSLNT) was able to attenuate Aβ toxicity at low micromolar concentrations without adversely affecting the cell viability. Polymers prepared from mono-sialyl-oligosaccharides were less effective at Aβ toxicity attenuation. These results demonstrate the feasibility of using photocrosslinked sialyl-oligosaccharides for prevention of Aβ toxicity in vitro and may provide insight into the design of new materials for use in attenuation of Aβ toxicity associated with AD.
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer’s disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with Alzheimer’s disease.
A major limitation of many surfaced enhanced Raman spectroscopy (SERS) approaches is the dependence of the Raman enhancement on the local nanostructure. While these local "hot spots" may provide areas of extremely strong enhancement, which make trace analyte detection possible, they also make quantitative measurements problematic. Gold nanoshells however, with the ratio of the radius of their silica core to gold shell tuned to the near infrared excitation wavelength, have been used as a platform for uniform SERS enhancement.By using nanoshells, the SERS enhancement is dependent on the resonance of single nanoshells, without relying on the uncontrolled contribution from localized "hot spots". The nanoshell platform is functionalized with sialic acid to mimic neuronal cells surfaces to allow for the specific binding of β-amyloid, the primary protein component of the senile plaques found in Alzheimer's disease patients. We ultimately hope that this mechanism will provide insight into the relationship between the progression of Alzheimer's disease and β-amyloid through detection of the toxic form of the protein with structural and concentration information. With this approach, we have obtained concentration dependent spectra, consistent across the platform surface, which indicate the feasibility of detecting β-amyloid oligomers into the picomolar range. Additionally, by monitoring SERS spectra as β-amyloid changes its structural conformation from monomer to fibril, we have demonstrated conformational dependence of the SERS signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.