Supramolecular hydrogels are used in the 3D printing of high-resolution, multi-material structures. The non-covalent bonds allow the extrusion of the inks into support gels to directly write structures continuously in 3D space. This material system supports the patterning of multiple inks, cells, and void spaces.
An in situ crosslinking strategy is used for 3D bioprinting of nonviscous photo-crosslinkable hydrogels. This method can be generalized to various photo-crosslinkable formulations, maintaining high embedded cell viability and tunable cell behavior. Heterogeneous and hollow filaments can be printed using this strategy, allowing fabrication of complex engineered cell-laden constructs.
The development of printable biomaterial
inks is critical to the
application of 3D printing in biomedicine. To print high-resolution
structures with fidelity to a computer-aided design, materials used
in 3D printing must be capable of being deposited on a surface and
maintaining a printed structure. A dual-cross-linking hyaluronic acid
system was studied here as a printable hydrogel ink, which encompassed
both shear-thinning and self-healing behaviors via guest–host
bonding, as well as covalent cross-linking for stabilization using
photopolymerization. When either guest–host assembly or covalent
cross-linking was used alone, long-term stable structures were not
formed, because of network relaxation after printing or dispersion
of the ink filaments prior to stabilization, respectively. The dual-cross-linking
hydrogel filaments formed structures with greater than 16 layers that
were stable over a month with no loss in mechanical properties and
the printed filament size ranged from 100 to 500 μm, depending
on printing parameters (needle size, speed, and extrusion flux). Printed
structures were further functionalized (i.e., RGD peptide) to support
cell adhesion. This work highlights the importance of ink formulation
and cross-linking on the printing of stable hydrogel structures.
Organs are complex systems composed of different cells, proteins and signalling molecules that are arranged in a highly ordered structure to orchestrate a myriad of functions in our body. Biofabrication strategies can be applied to engineer 3D tissue models in vitro by mimicking the structure and function of native tissue through the precise deposition and assembly of materials and cells. This approach allows the spatiotemporal control over cell-cell and cell-extracellular matrix communication and thus the recreation of tissue-like structures. In this Review, we examine biofabrication strategies for the construction of functional tissue replacements and organ models, focusing on the development of biomaterials, such as supramolecular and photosensitive materials, that can be processed using biofabrication techniques. We highlight bioprinted and bioassembled tissue models and survey biofabrication techniques for their potential to recreate complex tissue properties, such as shape, vasculature and specific functionalities. Finally, we discuss challenges, such as scalability and the foreign body response, and opportunities in the field and provide an outlook to the future of biofabrication in regenerative medicine.
Abstract3D printing involves the development of inks that exhibit the requisite properties for both printing and the intended application. In bioprinting, these inks are often hydrogels with controlled rheological properties that can be stabilized after deposition. Here, an alternate approach is developed where the ink is composed exclusively of jammed microgels, which are designed to incorporate a range of properties through microgel design (e.g., composition, size) and through the mixing of microgels. The jammed microgel inks are shear‐thinning to permit flow and rapidly recover upon deposition, including on surfaces or when deposited in 3D within hydrogel supports, and can be further stabilized with secondary cross‐linking. This platform allows the use of microgels engineered from various materials (e.g., thiol‐ene cross‐linked hyaluronic acid (HA), photo‐cross‐linked poly(ethylene glycol), thermo‐sensitive agarose) and that incorporate cells, where the jamming process and printing do not decrease cell viability. The versatility of this particle‐based approach opens up numerous potential biomedical applications through the printing of a more diverse set of inks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.