Certain cytokines that are produced in liver may act as growth factors to facilitate wound healing and, hence, may influence liver regeneration. However, this hypothesis has not been directly tested. To determine whether the cytokine response evoked by partial hepatectomy (PH) modulates the process of liver regeneration, adult male rats were injected intraperitoneally with either goat polyclonal antibodies to rat tumor necrosis factor (TNF; 15 micrograms/g body wt) or an equal amount of goat anti-rat immunoglobulin G 1 h before PH. Animals were killed at 12, 24, 48, or 72 h post-PH, 1 h after injection with [3H]thymidine. Serum TNF levels were measured with the L929 cytotoxicity assay, titers of antibody to TNF were determined by enzyme-linked immunoabsorbent assay, and interleukin-6 (IL-6) concentrations were measured by B9 cell bioassay. Liver regeneration was assessed by [3H]thymidine incorporation into hepatic DNA and by immunohistochemical evidence of proliferating cell nuclear antigen (PCNA) expression. Antibodies to TNF were detected in treated rats but not in controls. Titers were highest at 12 h and progressively fell. Although TNF was never detected in serum, treatment with anti-TNF pre-PH significantly inhibited increases in serum IL-6 concentration post-PH. Anti-TNF pretreatment also inhibited [3H]thymidine incorporation into DNA, as well as expression of PCNA by both hepatocytes and liver nonparenchymal cells. These data indicate that TNF positively modulates liver regeneration after PH.
Although previous work suggests that tumor necrosis factor-alpha (TNF) promotes liver regeneration after partial hepatectomy (PH), the source of TNF is unknown. If Kupffer cells release TNF after PH, then Kupffer cell depletion by gadolinium chloride (GdCl) should inhibit liver regeneration. To test this hypothesis, cytokine expression and regenerative events were compared in GdCl-treated and control rats. Functional assays and Northern blot analysis of a Kupffer cell-specific mRNA confirmed that GdCl depleted Kupffer cells. Despite this, semiquantitative reverse transcription-polymerase chain reaction analysis of total hepatic RNA showed six- to eightfold higher levels of TNF transcripts in GdCl-treated rats. In this group, PH caused 12-to 16-fold greater induction of interleukin-6, a TNF-inducible cytokine, and two- to threefold greater induction of several cytokine-regulated genes (c-jun, C/EBP-beta, and C/EBP-delta). GdCl also amplified regeneration-associated increases in the DNA binding activity of AP-1, a growth regulatory transcription factor. Furthermore, hepatic incorporation of [3H]thymidine, expression of the S-phase antigen, proliferating cell nuclear antigen, and the hepatocyte mitotic index were each significantly greater in GdCl-treated rats. Thus, although GdCl causes Kupffer cell depletion, it does not decrease liver TNF and actually enhances liver regeneration after PH.
Highlights d MSI-H tumors are enriched in recurrent shared immunogenic frameshifts d Shared frameshifts are expressed on RNA and protein levels d Shared frameshifts produce exceptional T cell responses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.