The light scattering properties of superconducting (T c % 3.8 K) heavily boron doped nanocrystalline diamond has been investigated by Raman spectroscopy using visible excitations. Fano type interference of the zone-center phonon line and the electronic continuum was identified. Lineshape analysis reveals Fano lineshapes with a significant asymmetry (q % À2). An anomalous wavelength dependence and small value of the Raman scattering amplitude is observed in agreement with previous studies.
We report on the transport properties of nanostructures made from boron-doped superconducting diamond. Starting from nanocrystalline superconducting boron-doped diamond thin films, grown by chemical vapour deposition, we pattern by electron-beam lithography devices with dimensions in the nanometer range. We show that even for such small devices, the superconducting properties of the material are well preserved: for wires of width less than 100 nm, we measure critical temperatures in the kelvin range and critical fields in the tesla range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.