We present comprehensive experimental line lists of methane (CH 4 ) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for the temperatures 300 -1400 • C at twelve 100 • C intervals spanning the 960 -5000 cm −1 (2.0 -10.4 µm) region of the infrared. This range encompasses the dyad, pentad and octad regions, i.e., all fundamental vibrational modes along with a number of combination, overtone and hot bands. Using our CH 4 spectra, we have estimated empirical lower state energies (E low in cm −1 ) and our values have been incorporated into the line lists along with line positions (ν in cm −1 ) and calibrated line intensities (S ′ in cm molecule −1 ). We expect our hot CH 4 line lists to find direct application in the modeling of planetary atmospheres and brown dwarfs.
Diurnal variations of land surface temperature (LST) play a vital role in a wide range of applications such as climate change assessment, land–atmosphere interactions, and heat-related health issues in urban regions. This study uses 15 years (2003–17) of daily observations of LST Collection 6 from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board the Aqua and the Terra satellites. A spline interpolation method is used to estimate half-hourly global LST from the MODIS measurements. A preliminary assessment of interpolated LST with hourly ground-based observations over selected stations of North America shows bias and an error of less than 1 K. Results suggest that the present interpolation method is capable of capturing the diurnal variations of LST reasonably well for different land-cover types. The diurnal cycle of LST and time of occurrence of maximum temperature are computed from the spatially and temporally consistent interpolated diurnal LST data at a global scale. Regions with higher variability in the timing of maximum LST hours and diurnal amplitude are identified in this study. The global desert regions show generally small variability of the monthly mean diurnal LST range, whereas larger areas of the global land exhibit rather higher variability in the diurnal LST range during the study period. Moreover, the changes in diurnal temperature range for the study period are examined for distinct land-cover types. Analysis of the 15-yr time series of the diurnal LST record shows an overall decrease of 0.5 K in amplitude over the Northern Hemisphere. However, the diurnal LST range shows variant changes in the Southern Hemisphere.
Abstract. This paper presents an analysis of observations of methane and its two major isotopologues, CH3D and 13CH4, from the Atmospheric Chemistry Experiment (ACE) satellite between 2004 and 2013. Additionally, atmospheric methane chemistry is modeled using the Whole Atmospheric Community Climate Model (WACCM). ACE retrievals of methane extend from 6 km for all isotopologues to 75 km for 12CH4, 35 km for CH3D, and 50 km for 13CH4. While total methane concentrations retrieved from ACE agree well with the model, values of δD–CH4 and δ13C–CH4 show a bias toward higher δ compared to the model and balloon-based measurements. Errors in spectroscopic constants used during the retrieval process are the primary source of this disagreement. Calibrating δD and δ13C from ACE using WACCM in the troposphere gives improved agreement in δD in the stratosphere with the balloon measurements, but values of δ13C still disagree. A model analysis of methane's atmospheric sinks is also performed.
Infrared absorption spectra of NH3 have been obtained at high resolution (0.02 cm-1) at seven temperatures between 296 and 973 K. The spectra were recorded using a Bruker IFS 125 infrared Fourier transform spectrometer in the 2400-5500 cm-1 region and empirical lower state energies have been obtained by comparison of line strengths at different temperatures. Using two reference line lists, quantum number assignments have been made for each temperature for between 1660 and 3020 transitions, with J up to 22. The line lists obtained provide accurate line positions as well as intensities and experimental lower state energies at temperatures relevant for modeling the atmospheres of brown dwarfs and exoplanets. Highlights Fourier transform infrared absorption spectra of hot ammonia Line positions, empirical lower state energies and intensities measured Line lists for brown dwarf and exoplanet atmospheres
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.