Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.
Fast entangling gates for trapped ion pairs offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on a neighbouring ion pair only involve local ions when performed sufficiently fast, and we find that even a fast gate between a pair of distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below 10 −4 . By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling two neighbouring ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.
Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiationhydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which to compare these solutions by studying supersonic and diffusive flow in the laboratory. We present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at the end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.
The performance of image plates based on the photostimulable phosphor BaF(Br,l):Eu2+ has been investigated and compared with x-ray film. Evaluation of detective quantum efficiency (DQE), sensitivity, dynamic range, and linearity was carried out for several types of commercially available image plate, using the Excalibur soft x-ray calibration facility at AWE. Image plate response was found to be linear over a dynamic range of 5 orders of magnitude. One type of image plate was found to have a number of advantages for soft x-ray detection, with a measured sensitivity 1 order of magnitude greater than that of Kodak Industrex CX and DEF-5 x-ray film. The DQE of this plate was found to be superior to that of film at low [less than 103 photons/(50 μm)2] and high fluxes [greater than 104 photons/(50 μm)2]. The spatial resolution of image plates, scanned with several models of commercial image plate readers, has been evaluated using a USAF resolution test target. The highest spatial resolution measured is 35 μm. Though this is significantly lower than the resolution possible with film, it is sufficient for many applications. Image plates were fielded in a refractive x-ray lens imaging diagnostic on the 1 TW Helen laser and these results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.