Study objectives
Helicopter emergency medical services (HEMS) providers have had to adjust to transporting patients with a novel, highly infectious pathogen. This study describes how HEMS organizations in the USA approached the coronavirus disease 2019 (COVID-19) pandemic in its first wave.
Methods
A survey was distributed via REDCap™ to HEMS organizations in May of 2020 using a national database. Data were collected regarding agency demographics and COVID-19 practices, including education, risk assessment, protective measures, equipment use, and decontamination practices. These were analyzed for qualitative observations and program attributes for COVID transport.
Results
A total of 68/287 (24%) organizations responded and completed the survey. Eighty-five percent (85%) of responding programs reported that they chose to transport known or suspected COVID-19 patients by air medical transport. Of responding programs, 93% provided education to their providers regarding COVID-19 and 100% conducted a COVID-19 risk analysis for patient transports. Of agencies transporting known or suspected COVID-19 patients, 77% required the use of N95 filtering facepiece respirators (N95) or powered air-purifying respirators (PAPR) for crewmembers during known or suspected COVID-19 patient transfers and 95% provided N95 respirators for pilots during transport. Five percent of responding programs utilized portable negative pressure isolation units. For COVID-19 transporting and non-transporting agencies, when transporting non-COVID-19 known or suspected patients, personal protective equipment (PPE) practice varied but tended to be more relaxed. Some services separated pilots from providers even during downtime (29%). Among services transporting known or suspected COVID-19 patients, the most common decontamination practice was manual wipe-down of all surfaces for a downtime of less than two hours.
Conclusion
The majority of survey respondents report that their programs chose to transport patients with known or suspected COVID-19 by air medical transport. However, there was high variability in practices regarding the transport of known or suspected COVID-19 as well as that of non-COVID-19 known or suspected patients by air during the initial outbreak of the pandemic. The HEMS industry may benefit from further research and standardization of airborne highly infectious disease transport practices in preparation for the next respiratory virus pandemic.
Background
Simulated needle thoracostomy (NT) using ultrasound may reduce potential injury, increase accuracy, and be as rapid to perform as the traditional landmark technique following a brief educational session. Our objective was to determine if the use of an educational session demonstrating the use of handheld ultrasound to Emergency Medical Services (EMS) staff to facilitate NT was both feasible, and an effective way of increasing the safety and efficacy of this procedure for rural EMS providers.
Methods
A pre/post-educational intervention on a convenience sample of rural North American EMS paramedics and nurses. Measurement of location and estimated depth of placement of needle thoracostomy with traditional landmark technique was completed and then repeated using handheld ultrasound following a training session on thoracic ultrasound and correct placement of NT.
Results
A total of 30 EMS practitioners participated. Seven were female (23.3%). There was a higher frequency of dangerous structures underlying the chosen location with the landmark technique 9/60 (15%) compared to the ultrasound technique 1/60 (1.7%) (p = 0.08). Mean time-to-site-selection for the landmark technique was shorter than the ultrasound technique at 10.7 s (range 3.35–45 s) vs. 19.9 s (range 7.8–50 s), respectively (p < 0.001). There was a lower proportion of correct location selection for the landmark technique 40/60 (66.7%) when compared to the ultrasound technique 51/60 (85%) (p = 0.019). With ultrasound, there was less variance between the estimated and measured depth of the pleural space with a mean difference of 0.033 cm (range 0–0.5 cm) when ultrasound was used as compared to a mean difference of 1.0375 cm (range 0–6 cm) for the landmark technique (95% CI for the difference 0.73–1.27 cm; p < 0.001).
Conclusions
Teaching ultrasound NT was feasible in our cohort. While time-to-site-selection for ultrasound-guided NT took longer than the landmark technique, it increased safe and accurate simulated NT placement with fewer identified potential iatrogenic injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.