Passive multi-target tracking applications require the integration of multiple spatially distributed sensor measurements to distinguish true tracks from ghost tracks. A popular multi-target tracking approach for these applications is the particle filter implementation of Mahler's probability hypothesis density (PHD) filter, which jointly updates the union of all target state space estimates without requiring computationally complex measurement-to-track data association. Although this technique is attractive for implementation in computationally limited platforms, the performance benefits can be significantly overshadowed by inefficient sampling of the target birth particles over the region of interest. We propose a multi-sensor extension of the adaptive birth intensity PHD filter described in (Ristic, 2012) to achieve efficient birth particle sampling driven by online sensor measurements from multiple sensors. The proposed approach is demonstrated using distributed timedifference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements, in which we describe exact techniques for sampling from the target state space conditioned on the observations. Numerical results are presented that demonstrate the increased particle density efficiency of the proposed approach over a uniform birth particle sampler.
A cognitive radar is a constrained utility maximizer that adapts its sensing mode in response to a changing environment. If an adversary can estimate the utility function of a cognitive radar, it can determine the radar's sensing strategy and mitigate the radar performance via electronic countermeasures (ECM). This paper discusses how a cognitive radar can hide its strategy from an adversary that detects cognition. The radar does so by transmitting purposefully designed sub-optimal responses to spoof the adversary's Neyman-Pearson detector. We provide theoretical guarantees by ensuring the Type-I error probability of the adversary's detector exceeds a pre-defined level for a specified tolerance on the radar's performance loss. We illustrate our cognition masking scheme via numerical examples involving waveform adaptation and beam allocation. We show that small purposeful deviations from the optimal strategy of the radar confuse the adversary by significant amounts, thereby masking the radar's cognition. Our approach uses novel ideas from revealed preference in microeconomics and adversarial inverse reinforcement learning. Our proposed algorithms provide a principled approach for system-level electronic countercountermeasures (ECCM) to mask the radar's cognition, i.e. , hide the radar's strategy from an adversary. We also provide performance bounds for our cognition masking scheme when the adversary has misspecified measurements of the radar's response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.