Summary1. Our understanding of the contribution of interspecific interactions to functional diversity in nature lags behind our knowledge of spatial and temporal patterns. Although two-species mutualisms are found in all types of ecosystems, the study of their ecological influences on other community members has mostly been limited to third species, while their influence on entire communities remains largely unexplored. 2. We hypothesized that mutualistic interactions between two respective ant species and an epiphyte mediate the biological traits composition of entire invertebrate communities that use the same host plant, thereby affecting food webs and functional diversity at the community level. 3. Aechmea mertensii (Bromeliaceae) is both a phytotelm ('plant-held water') and an ant-garden epiphyte. We sampled 111 bromeliads (111 aquatic invertebrate communities) associated with either the ant Pachycondyla goeldii or Camponotus femoratus. The relationships between ants, bromeliads and invertebrate abundance data were examined using a redundancy analysis. Biological traits information for invertebrates was structured using a fuzzy-coding technique, and a co-inertia analysis between traits and abundance data was used to interpret functional differences in bromeliad ecosystems. 4. The vegetative traits of A. mertensii depended on seed dispersion by C. femoratus and P. goeldii along a gradient of local conditions. The ant partner selected sets of invertebrates with traits that were best adapted to the bromeliads' morphology, and so the composition of the biological traits of invertebrate phytotelm communities depends on the identity of the ant partner. Biological traits suggest a bottom-up control of community structure in C. femoratus-associated phytotelmata and a greater structuring role for predatory invertebrates in P. goeldii-associated plants.5. This study presents new information showing that two-species mutualisms affect the functional diversity of a much wider range of organisms. Most biological systems form complex networks where nodes (e.g. species) are more or less closely linked to each other, either directly or indirectly, through intermediate nodes. Our observations provide community-level information about biological interactions and functional diversity, and perspectives for further observations intended to examine whether large-scale changes in interacting species ⁄ community structure over broad geographical and anthropogenic gradients affect ecosystem functions.
The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on (1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on (2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree of plant specificity.
Communities are mostly composed of rare species; yet, the factors that determine their patterns of occurrence remain obscure. Theory predicts that, in contrast with common species, the occurrence of rare species will be poorly correlated with environmental variables (niches) and more affected by stochasticity (ecological drift), but how this pattern varies across different trophic groups is still poorly understood. Here, we compared the ability of environmental variables (bottomup biotic niches) to predict the occurrence of plant-dwelling arthropods across different abundance classes in the Cape Floristic Region of South Africa. We compared three trophic groups, including 104 herbivorous hemipteran, 171 parasitoid wasp and 84 spider species, totalling 4511 individuals in 48 quadrats. To quantify bottom-up biotic niches, we studied the influences of species composition of plants on hemipterans, and of plants and hemipterans on spiders and wasps. We compared the observed strength of the correlation between rare species and their niches with expectations that were generated by repeatedly rarefying abundant species. A large proportion of arthropod species were very rare, i.e. with only one or two individuals (49-55%). Although rarefying abundant species greatly decreased the correlation with bottom-up biotic niches, bottom-up biotic niches generally better predicted the occurrence of rarefied abundant species than very rare ones, suggesting a greater influence of drift on very rare arthropods. That is, (very) rare arthropods are distributed more randomly than rarefied abundant species. Nevertheless, trophic groups differed in the details of their response to bottom-up biotic niches. Plant species composition was a better predictor of rarefied abundant than truly rare hemipterans. In contrast, the importance of bottom-up biotic niches among abundance classes varied less visibly in spiders and wasps. Our study thus suggests that the importance of niches in structuring arthropod communities depends on species rarity and trophic group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.