Neurons in the cat and monkey cerebral cortex were stained immunocytochemically for glutamic acid decarboxylase (GluDCase; L-glutamate 1-carboxy-lyase, EC 4.1. GluDCase was co-localized with CCK, SRIF, or NPY not only in cell somata, but also in small punctate structures, which are likely to be axon terminals. From the data gained in previous electron microscopic studies, we postulate that neurons displaying GluDCase-and CCK-like immunoreactivity are a class separate from those displaying GluDCase-and SRIF-like immunoreactivity. NPY, however, is co-localized with SRIF immunoreactivity. These results imply that classes of cortical interneuron contain a conventional neurotransmitter (y-aminobutyric acid) and a neuromodulator (one of the peptides).
Antibodies against neuropeptides and against a vitamin D-dependent calcium-binding protein (CaBP) label small cells with nonpyramidal-like morphology in the cat visual cortex (areas 17, 18, and 19). Since GABAergic cells are interneurons, a double-staining procedure was used to test for the coexistence of cholecystokinin (CCK), somatostatin (SRIF), neuropeptide Y (NPY), corticotropin-releasing factor (CRF), vasoactive intestinal polypeptide (VIP), and CaBP with glutamic acid decarboxylase (GAD). Our results show that CRF and VIP do not coexist with GAD, while the 3 other peptides and CaBP do. Hence GAD-positive cells can be subdivided into 4 broad groups: (1) cells that are only GAD-positive, (2) cells that are GAD- and CaBP-positive, (3) GAD- positive neurons also containing CCK, and (4) GAD-positive cells that also contain SRIF. A small subset of class 2 also contains SRIF and most cells of class 4 also contain NPY. The 4 classes of GAD-positive cells differ in laminar position: class 1 predominates in layers IV and V, classes 2 and 3 in the upper laminae (II and III), and class 4 in the deepest layer (VI).
Since all long-distance trade in the Roman world travelled by water, Roman harbour design and construction have special importance. Harbour excavation must be supplemented by analysis of the components of the hydraulic concrete, structural analysis of the cementing materials, and consideration of the design of the wooden formwork. The authors have begun collecting large cores from concrete blocks at Roman harbours and other maritime structures, analysing the materials used, the method of placement, and the structural characteristics of the resulting concrete. These data have provided new information on the engineering properties of Roman concrete, the process of funding and execution, and the trade in the volcanic ash which was the crucial component of hydraulic concrete.
Human genome-wide association studies (GWAS) have shown that genetic variation at >130 gene loci is associated with type 2 diabetes (T2D). We asked if the expression of the candidate T2D-associated genes within these loci is regulated by a common locus in pancreatic islets. Using an obese F2 mouse intercross segregating for T2D, we show that the expression of ~40% of the T2D-associated genes is linked to a broad region on mouse chromosome (Chr) 2. As all but 9 of these genes are not physically located on Chr 2, linkage to Chr 2 suggests a genomic factor(s) located on Chr 2 regulates their expression in trans. The transcription factor Nfatc2 is physically located on Chr 2 and its expression demonstrates cis linkage; i.e., its expression maps to itself. When conditioned on the expression of Nfatc2, linkage for the T2D-associated genes was greatly diminished, supporting Nfatc2 as a driver of their expression. Plasma insulin also showed linkage to the same broad region on Chr 2. Overexpression of a constitutively active (ca) form of Nfatc2 induced β-cell proliferation in mouse and human islets, and transcriptionally regulated more than half of the T2D-associated genes. Overexpression of either ca-Nfatc2 or ca-Nfatc1 in mouse islets enhanced insulin secretion, whereas only ca-Nfatc2 was able to promote β-cell proliferation, suggesting distinct molecular pathways mediating insulin secretion vs. β-cell proliferation are regulated by NFAT. Our results suggest that many of the T2D-associated genes are downstream transcriptional targets of NFAT, and may act coordinately in a pathway through which NFAT regulates β-cell proliferation in both mouse and human islets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.