Background. Deceased donor livers are prone to biliary complications, which may necessitate retransplantation, and we, and others, have suggested that these complications are because of peribiliary vascular fibrin microthrombi. We sought to determine the prevalence and consequence of occult fibrin within deceased donor livers undergoing normothermic ex situ perfusion (NESLiP) and evaluate a role for fibrinolysis. Methods. D-dimer concentrations, products of fibrin degradation, were assayed in the perfusate of 163 livers taken after 2 h of NESLiP, including 91 that were transplanted. These were related to posttransplant outcomes. Five different fibrinolytic protocols during NESLiP using alteplase were evaluated, and the transplant outcomes of these alteplase-treated livers were reviewed. Results. Perfusate D-dimer concentrations were lowest in livers recovered using in situ normothermic regional perfusion and highest in alteplase-treated livers. D-dimer release from donation after brain death livers was significantly correlated with the duration of cold ischemia. In non-alteplase-treated livers, Cox proportional hazards regression analysis showed that D-dimer levels were associated with transplant survival (P = 0.005). Treatment with alteplase and fresh frozen plasma during NESLiP was associated with significantly more D-dimer release into the perfusate and was not associated with excess bleeding postimplantation; 8 of the 9 treated livers were free of cholangiopathy, whereas the ninth had a proximal duct stricture. Conclusions. Fibrin is present in many livers during cold storage and is associated with poor posttransplant outcomes. The amount of D-dimer released after fibrinolytic treatment indicates a significant occult fibrin burden and suggests that fibrinolytic therapy during NESLiP may be a promising therapeutic intervention.
Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease‐causing cells. New immunotherapies that induce potent and selective antigen‐specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting—or even reversing—disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen‐specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Biomaterials allow for the precision control over the combination and release of cargo needed to engineer cell outcomes. These capabilities are particularly attractive as new candidate therapies to treat autoimmune diseases, conditions where dysfunctional immune cells create pathogenic tissue environments during attack of self-molecules termed self-antigens. Here we extend past studies showing combinations of a small molecule immunomodulator co-delivered with self-antigen induces antigen-specific regulatory T cells. In particular, we sought to elucidate how different ratios of these components loaded in degradable polymer particles shape the antigen presenting cell (APC) -T cell interactions that drive differentiation of T cells toward either inflammatory or regulatory phenotypes. Using rapamycin (rapa) as a modulatory cue and myelin self-peptide (myelin oligodendrocyte glycoprotein- MOG) – self-antigen attacked during multiple sclerosis (MS), we integrate these components into polymer particles over a range of ratios and concentrations without altering the physicochemical properties of the particles. Using primary cell co-cultures, we show that while all ratios of rapa:MOG significantly decreased expression of co-stimulation molecules on dendritic cells (DCs), these levels were insensitive to the specific ratio. During co-culture with primary T cell receptor transgenic T cells, we demonstrate that the ratio of rapa:MOG controls the expansion and differentiation of these cells. In particular, at shorter time points, higher ratios induce regulatory T cells most efficiently, while at longer time points the processes are not sensitive to the specific ratio. We also found corresponding changes in gene expression and inflammatory cytokine secretion during these times. The in vitro results in this study contribute to in vitro regulatory T cell expansion techniques, as well as provide insight into future studies to explore other modulatory effects of rapa such as induction of maintenance or survival cues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.