phone 1 972 995-4463; fax 1 972 995-2770 Texas Instruments Incorporated, PO BOX 650311, MS3735, Dallas, TX 75265.
ABSTRACTA systematic study has been conducted to evaluate accuracy and precision of spectral scatterometry used for twodimensional (2D) characterization of trenches formed in fluorinated silicon glass (FSG). Experiments were done on short-flow dual-damascene Cu interconnect material. Trench critical dimensions (CD) obtained using KLA-Tencor's spectral scatterometer were correlated with data collected using CD atomic force microscope (AFM), CD scanning electron microscope (SEM) and transmission electron microscope (TEM). 3 major trench characteristics were analyzed: trench width, trench depth and sidewall angle. Spectral scatterometry demonstrated an excellent correlation (above 0.96) with CD AFM and SEM in tested trench width range of (80-240) nm and trench depth range of (410-450) nm. Spectral scatterometry showed acceptable correlation of 0.55 and minimal offset of 0.05º with AFM in tested sidewall angle range of (87.5-89) degrees. Spectral scatterometry has demonstrated better than 1.0 nm and 0.2º dynamic precision (3σ) for both width and height and sidewall angle, respectively. We conclude that KLA-Tencor's SpectraCD system is capable of accurate and precise 2D characterization of FSG trenches. We recommend scatterometry as a high throughput and non-destructive metrology for trench linewidth and depth monitoring in low-K dielectric interconnect manufacturing.
Gate critical dimension (CD) uniformity across field is a key parameter in total gate CD control; it is especially important for highly integrated microprocessor chip with large die size and high speed. Intensive study has been conducted to reveal the impact of scanner leveling tilt, defocus and illumination distribution on CD uniformity across field. Correspondingly CD in die range, vertical-horizontal CD bias, resist side wall angle and profile have all been characterized and monitored for each individual scanner. The monitoring methodology we have established enables us to maintain these CD parameters within fairly tight control range, and also provided efficient and accurate data on tool capability and marginality for running production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.