In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks.
The innate immune response is essential for combating infectious disease. Macrophages and other cells respond to infection by releasing cytokines such as interleukin-1β (IL-1β), which in turn activate a well-described myeloid differentiation factor 88 (MYD88) -mediated, nuclear factor-κB (NF-κB) -dependent transcriptional pathway that results in inflammatory cell activation and recruitment1–4. Endothelial cells, which usually serve as a barrier to the movement of inflammatory cells out of the blood and into tissue, are also critical mediators of the inflammatory response5,6. Paradoxically, the same cytokines vital to a successful immune defense also have disruptive effects on endothelial cell-cell interactions and can trigger degradation of barrier function and dissociation of tissue architecture7–9. The mechanism of this barrier dissolution and its relationship to the canonical NF-κB pathway remains ill defined. Here we show that the direct, immediate, and disruptive effects of IL-1β on endothelial stability are NF-κB independent and are instead the result of signaling via the small GTPase, ADP-ribosylation factor 6 (ARF6), and its activator, ARF nucleotide binding site opener (ARNO). Moreover, we show that ARNO binds directly to the adaptor protein MYD88, and thus propose MYD88-ARNO-ARF6 as a proximal IL-1β signaling pathway distinct from that mediated by NF-κB (Supplementary Fig. 1). Finally, we show that SecinH3, an inhibitor of ARF guanine nucleotide-exchange factors (GEFs) such as ARNO, enhances vascular stability and significantly improves outcomes in animal models of inflammatory arthritis and acute inflammation.
Background Cerebral cavernous malformation (CCM) is a hemorrhagic stroke disease affecting up to 0.5% of North Americans with no approved non-surgical treatment. A subset of patients have a hereditary form of the disease due primarily to loss-of-function mutations in KRIT1, CCM2, or PDCD10. We sought to identify known drugs that could be repurposed to treat CCM. Methods and Results We developed an unbiased screening platform based on both cellular and animal models of loss-of-function of CCM2. Our discovery strategy consisted of four steps: an automated immunofluorescence and machine-learning-based primary screen of structural phenotypes in human endothelial cells deficient in CCM2; a secondary screen of functional changes in endothelial stability in these same cells; a rapid in vivo tertiary screen of dermal microvascular leak in mice lacking endothelial Ccm2; and finally a quaternary screen of CCM lesion burden in these same mice. We screened 2,100 known drugs and bioactive compounds, and identified two candidates for further study, cholecalciferol (Vitamin D3) and tempol (a scavenger of superoxide). Each drug decreased lesion burden in a mouse model of CCM vascular disease by approximately 50%. Conclusions By identifying known drugs as potential therapeutics for CCM, we have decreased the time, cost, and risk of bringing treatments to patients. Each drug also prompts additional exploration of biomarkers of CCM disease. We further suggest that the structure-function screening platform presented here may be adapted and scaled to facilitate drug discovery for diverse loss-of-function genetic vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.