Anticancer uses of non-oncology drugs have occasionally been found, but such discoveries have been serendipitous. We sought to create a public resource containing the growth-inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. We used PRISM (profiling relative inhibition simultaneously in mixtures), a molecular barcoding method, to screen drugs against cell lines in pools. An unexpectedly large number of non-oncology drugs selectively inhibited subsets of cancer cell lines in a manner predictable from the molecular features of the cell lines. Our findings include compounds that killed by inducing phosphodiesterase 3A-Schlafen 12 complex formation, vanadium-containing compounds whose killing depended on the sulfate transporter SLC26A2, the alcohol dependence drug disulfiram, which killed cells with low expression of metallothioneins, and the anti-inflammatory drug tepoxalin, which killed via the multidrug resistance protein ATP-binding cassette subfamily B member 1 (ABCB1). The PRISM drug repurposing resource (https://depmap.org/repurposing) is a starting point to develop new oncology therapeutics, and more rarely, for potential direct clinical translation. NATURE CANCER | VOL 1 | FeBRUARY 2020 | 235-248 | www.nature.com/natcancer 235 ResouRce NATuRE CANCER the remaining compounds being either chemotherapeutics (2%) or targeted oncology agents (21%).Screening results. We employed a 2-stage screening strategy whereby drugs were first screened in triplicate at a single dose (2.5 µM); 1,448 drugs screening positives were then rescreened in triplicate in an eight-point dose-response ranging from 10 µM to 610 pM ( Fig. 1c and Supplementary Table 2). Interestingly, most active compounds (774 out of 1,448, 53%) were originally developed for non-oncology clinical indications (Fig. 1d). The primary and secondary screening datasets are available on the Cancer Dependency Map portal (https://depmap.org/repurposing) and figshare (https://doi.org/10.6084/m9.figshare.9393293; Extended Data Figs. 1-4). We compared the PRISM results to two gold standard datasets: GDSC (ref. 2 ) and CTD 2 (ref. 3 ). The three datasets shared 84 compounds tested on a median of 236 common cell lines, yielding 16,650 shared data points. The PRISM dataset had a similar degree of concordance to GDSC and CTD 2 (Pearson correlations of 0.60 and 0.61, respectively over all shared data points), as the GDSC and CTD 2 datasets had to each other (Pearson correlation 0.62) (Extended Data Fig. 5a). The three datasets remained similarly concordant when the analysis was restricted to data points showing evidence of anticancer activity (Extended Data Fig. 5b). We conclude that, despite differences in assay format, sources of compounds 5 and sources of cell lines 6 , the PRISM Repurposing dataset is similarly robust compared to existing pharmacogenomic datasets.At the level of individual compound dose-responses, we note that the PRISM Repurposing dataset tends to be somewhat noisier, with a higher standard error estimated from vehicle contr...
Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells. The mechanisms regulating invadopodium assembly and maturation are not understood. We have dissected the stages of invadopodium assembly and maturation and show that invadopodia use cortactin phosphorylation as a master switch during these processes. In particular, cortactin phosphorylation was found to regulate cofilin and Arp2/3 complex–dependent actin polymerization. Cortactin directly binds cofilin and inhibits its severing activity. Cortactin phosphorylation is required to release this inhibition so cofilin can sever actin filaments to create barbed ends at invadopodia to support Arp2/3-dependent actin polymerization. After barbed end formation, cortactin is dephosphorylated, which blocks cofilin severing activity thereby stabilizing invadopodia. These findings identify novel mechanisms for actin polymerization in the invadopodia of metastatic carcinoma cells and define four distinct stages of invadopodium assembly and maturation consisting of invadopodium precursor formation, actin polymerization, stabilization, and matrix degradation.
Invasive carcinoma cells use specialized actin polymerization-driven protrusions called invadopodia to degrade and possibly invade through the extracellular matrix (ECM) during metastasis. Phosphorylation of the invadopodium protein cortactin is a master switch that activates invadopodium maturation and function. Cortactin was originally identified as a hyperphosphorylated protein in v-Src-transformed cells, but the kinase or kinases that are directly responsible for cortactin phosphorylation in invadopodia remain unknown. In this study, we provide evidence that the Abl-related nonreceptor tyrosine kinase Arg mediates epidermal growth factor (EGF)-induced cortactin phosphorylation, triggering actin polymerization in invadopodia, ECM degradation, and matrix proteolysis-dependent tumor cell invasion. Both Src and Arg localize to invadopodia and are required for EGF-induced actin polymerization. Notably, Arg overexpression in Src knockdown cells can partially rescue actin polymerization in invadopodia while Src overexpression cannot compensate for loss of Arg, arguing that Src indirectly regulates invadopodium maturation through Arg activation. Our findings suggest a novel mechanism by which an EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Furthermore, they identify Arg as a novel mediator of invadopodia function and a candidate therapeutic target to inhibit tumor invasion in vivo. Cancer Res; 71(5); 1730-41. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.