An iterative method is given for solving Ax ~ffi b and minU Ax -b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerical properties.Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugate-gradient algorithms, indicating that I~QR is the most reliable algorithm when A is ill-conditioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.