In this era, hotel has storage as a storing space for every kind of items. Items stored in the storage are items being used for the needs of the staffs, also for the needs of hotel’s operational. The item consumption is running smoothly with resupply. However, there are often mistakes in resupplying the items. For preventing those several mistakes, a reference is needed to be used for controlling the amount of items arrival (monthly) with minding the amount of items in the storage should be. The reference to be used is the forecast of the item consumption every month. Forecasting was being done with Autoregressive Integrated Moving Average (ARIMA) method. There are five steps needed to build the ARIMA model, such as plot identification, model identification, model estimation, choosing the best model, and prediction (forecast). The input variable to be used in this research is the rime series from the data of storage’s item consumption starts from January 2018 until October 2020, and the output variable is the result of the prediction of item consumption in the next period, such as in November to December 2020. The results is subtracted with the number of items left in storage to obtain the minimum amount of item to be entered for the month.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.