We propose a predator‐prey model by incorporating a constant harvesting rate into a Lotka‐Volterra predator‐prey model with prey refuge. All the positive equilibria and the local stability of the proposed model are studied and analyzed by sorting out the intervals of the parameters involved in the model. These intervals of the parameters exhibit the effects on the dynamical behaviors of prey and predators. The emphasis is put on the ranges of the prey refuge constant and harvesting rate. We show that the model has three‐type positive boundary equilibria and one positive interior equilibrium. By using the qualitative theory for planar systems, we show that the three‐type boundary positive equilibria can be saddles, saddle nodes, topological saddles, or stable or unstable nodes, and the interior positive equilibrium is locally asymptotically stable. Under suitable restrictions on the parameters, we prove that the positive interior equilibrium is a stable node. It remains open that under what conditions on the parameters is the positive interior equilibrium a focus.
We propose a predator-prey model by incorporating a constant harvesting rate into a Lotka-Volterra predator-prey model with prey refuge which was studied recently. All the positive equilibria and the local stability of the proposed model are studied and analyzed by sorting out the intervals of the parameters involved in the model. These intervals of the parameters exhibit the effects on the dynamical behaviors of prey and predators. The emphasis is put on the ranges of the prey refuge constant and harvesting rate. We show that the model has two positive boundary equilibria and one equilibrium. By using the qualitative theory for planar systems, we show that the two positive boundary equilibria can be saddles, saddle-nodes, topological saddles or stable or unstable nodes, and the interior positive equilibrium is locally asymptotically stable. Under suitable restrictions on the parameters, we prove that the positive interior equilibrium is a stable node.
We propose a predator-prey model by incorporating a constant harvesting rate into a Lotka-Volterra predator-prey model with prey refuge which was studied recently. All the positive equilibria and the local stability of the proposed model are studied and analyzed by sorting out the intervals of the parameters involved in the model. These intervals of the parameters exhibit the effects on the dynamical behaviors of prey and predators. The emphasis is put on the ranges of the prey refuge constant and harvesting rate. We show that the model has two positive boundary equilibria and one equilibrium. By using the qualitative theory for planar systems, we show that the two positive boundary equilibria can be saddles, saddle-nodes, topological saddles or stable or unstable nodes, and the interior positive equilibrium is locally asymptotically stable. Under suitable restrictions on the parameters, we prove that the positive interior equilibrium is a stable node.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.