The dissolution of silver nanoparticles (AgNPs) to release Ag(I)(aq) is an important mechanism in potentiating AgNP cytotoxicity and imparting their antibacterial properties. However, AgNPs can undergo other simultaneous biophysicochemical transformations, such as protein adsorption, which can mediate AgNP dissolution behaviors. We report the comprehensive analysis of AgNP dissolution and protein adsorption behaviors with monolayer surface coverage of AgNPs by bovine serum albumin (BSA). AgNP dissolution rate constants, k dissolution , were quantified over several particle sizes (10, 20, and 40 nm) and BSA concentrations (0−2 nM) using linear sweep stripping voltammetry. Across all particle sizes, the dissolution rate constant increased with increasing BSA concentrations. However, protein-enhanced dissolution behaviors were most pronounced for 10 nm AgNPs, which exhibited 3.6-fold and 7.7-fold relative enhancement when compared to 20 and 40 nm AgNPs, respectively. Changes to AgNP surface properties upon interaction with BSA were monitored using dynamic light scattering and zeta potential measurements, while BSA−AgNP complex formation was evaluated using UV−vis spectroscopy and circular dichroism spectroscopy. A subtle increase in the BSA−AgNP association constant was observed with an increase in the AgNP size. Together, these results suggest that the AgNP size dependence of BSA-enhanced dissolution of AgNPs is possibly mediated through both displacement of Ag(I)(aq)-loaded BSA by excess protein in the bulk solution and minimized accessibility of the AgNP surface because of BSA adsorption.
Breast cancer cells generally develop resistance to TNF-Related Apoptosis-Inducing Ligand (TRAIL) and, therefore, assistance from sensitizers is required. In our study, we have demonstrated that Spleen tyrosine kinase (Syk) inhibitor Bay 61–3606 was identified as a TRAIL sensitizer. Amplification of TRAIL-induced apoptosis by Bay 61–3606 was accompanied by the strong activation of Bak, caspases, and DNA fragmentation. In mechanism of action, Bay 61–3606 sensitized cells to TRAIL via two mechanisms regulating myeloid cell leukemia sequence-1 (Mcl-1). First, Bay 61–3606 triggered ubiquitin-dependent degradation of Mcl-1 by regulating Mcl-1 phosphorylation. Second, Bay 61–3606 downregulates Mcl-1 expression at the transcription level. In this context, Bay 61–3606 acted as an inhibitor of Cyclin-Dependent Kinase (CDK) 9 rather than Syk. In summary, Bay 61–3606 downregulates Mcl-1 expression in breast cancer cells and sensitizes cancer cells to TRAIL-mediated apoptosis.
In the MAPK pathway, an oncogenic V600E mutation in B-Raf kinase causes the enzyme to be constitutively active, leading to aberrantly high phosphorylation levels of its downstream effectors, MEK and ERK kinases. The V600E mutation in B-Raf accounts for more than half of all melanomas and ~3% of all cancers and many drugs target the ATP-binding site of the enzyme for its inhibition. Since B-Raf can develop resistance against these drugs and such drugs can induce paradoxical activation, drugs that target allosteric sites are needed. To identify other potential drug targets, we generated and kinetically characterized an active form of B-Raf V600E expressed using a bacterial expression system. In doing so, we identified an alpha helix on B-Raf, found at the B-Raf-MEK interface, that is critical for their interaction and the oncogenic activity of B-Raf V600E . We performed binding experiments between B-Raf mutants and MEK using pull downs and biolayer interferometry, and assessed phosphorylation levels of MEK in vitro and in cells as well as its downstream target ERK to show that mutating certain residues on this alpha helix is detrimental to binding and downstream activity. Our results suggest that this B-Raf alpha helix binding site on MEK could be a site to target for drug development to treat B-Raf V600E -induced melanomas.
Introduction: Biomolecules bind to and transform nanoparticles, mediating their fate in biological systems. Despite over a decade of research into the protein corona, the role of protein modifications in mediating their interaction with nanomaterials remains poorly understood. In this study, we evaluated how glycation of the most abundant blood protein, human serum albumin (HSA), influences the formation of the protein corona on 40 nm silver nanoparticles (AgNPs) and the toxicity of AgNPs to the HepG2 human liver cell line.Methods: The effects of glycation on AgNP-HSA interactions were quantified using circular dichroism spectroscopy to monitor protein structural changes, dynamic light scattering to assess AgNP colloidal stability, zeta potential measurements to measure AgNP surface charge, and UV-vis spectroscopy and capillary electrophoresis (CE) to evaluate protein binding affinity and kinetics. The effect of the protein corona and HSA glycation on the toxicity of AgNPs to HepG2 cells was measured using the WST cell viability assay and AgNP dissolution was measured using linear sweep stripping voltammetry.Results and Discussion: Results from UV-vis and CE analyses suggest that glycation of HSA had little impact on the formation of the AgNP protein corona with protein-AgNP association constants of ≈2x107 M-1 for both HSA and glycated HSA (gHSA). The formation of the protein corona itself (regardless of whether it was formed from HSA or glycated HSA) caused an approximate 2-fold decrease in cell viability compared to the no protein AgNP control. While the toxicity of AgNPs to cells is often attributed to dissolved Ag(I), dissolution studies showed that the protein coated AgNPs underwent less dissolution than the no protein control, suggesting that the protein corona facilitated a nanoparticle-specific mechanism of toxicity. Overall, this study highlights the importance of protein coronas in mediating AgNP interactions with HepG2 cells and the need for future work to discern how protein coronas and protein modifications (like glycation) may alter AgNP reactivity to cellular organisms.
In the mitogen‐activated protein kinase (MAPK) pathway, an oncogenic V600E mutation in B‐Raf kinase causes the enzyme to be constitutively active, leading to aberrantly high phosphorylation levels of its downstream effectors, MEK and ERK kinases. The V600E mutation in B‐Raf accounts for more than half of all melanomas and ~3% of all cancers and many drugs target the ATP‐binding site of the enzyme for its inhibition. Since B‐Raf can develop resistance against these drugs and such drugs can induce paradoxical activation, drugs that target allosteric sites are needed. To identify other potential drug targets, we used information from the available B‐Raf‐MEK crystal structure to generate an active form of B‐RafV600E that can be expressed using a bacterial expression system. In doing so, we identified an alpha helix on B‐Raf, found at the B‐Raf‐MEK interface, that is critical for their interaction and the oncogenic activity of B‐RafV600E. We introduced mutations along this alpha helix to pinpoint regions that are important for the B‐Raf‐MEK interaction and tested their effects on binding and phosphorylation. We performed binding experiments between B‐Raf mutants and MEK using pull downs and biolayer interferometry. We also assessed phosphorylation levels of MEK, as well as its downstream target ERK, in vitro and in cells. These studies showed that mutating certain residues on this alpha helix is detrimental to binding and downstream activity. This result suggests that this B‐Raf alpha helix binding site on MEK could be a site to target for drug development to treat B‐RafV600E‐induced melanomas. Our cell‐based data with a point mutation in B‐Raf further suggests that combination therapies with ATP‐competitive inhibitors would be useful to further reduce B‐Raf activity and prevent the development of resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.