Holo-tomographic microscopy (HTM) is a label-free microscopy method reporting the fine changes of a cell’s refractive indices (RIs) in three dimensions at high spatial and temporal resolution. By combining HTM with epifluorescence, we demonstrate that mammalian cellular organelles such as lipid droplets (LDs) and mitochondria show specific RI 3D patterns. To go further, we developed a computer-vision strategy using FIJI, CellProfiler3 (CP3), and custom code that allows us to use the fine images obtained by HTM in quantitative approaches. We could observe the shape and dry mass dynamics of LDs, endocytic structures, and entire cells’ division that have so far, to the best of our knowledge, been out of reach. We finally took advantage of the capacity of HTM to capture the motion of many organelles at the same time to report a multiorganelle spinning phenomenon and study its dynamic properties using pattern matching and homography analysis. This work demonstrates that HTM gives access to an uncharted field of biological dynamics and describes a unique set of simple computer-vision strategies that can be broadly used to quantify HTM images.
Holo-tomographic microscopy (HTM) is a label-free non-phototoxic microscopy method reporting the fine changes of a cell's refractive indexes (RI) in 3D. By combining HTM with epifluorescence, we demonstrate that cellular organelles such as Lipid droplets and mitochondria show a specific RI signature that distinguishes them with high resolution and contrast. We further show that HTM allows to follow in unprecedented ways the dynamics of mitochondria, lipid droplets as well as that of endocytic structures in live cells over long period of time, which led us to observe to our knowledge for the first time a global organelle spinning occurring before mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.