The localization of orexin neuropeptides in the lateral hypothalamus has focused interest on their role in ingestion. The orexigenic neurones in the lateral hypothalamus, however, project widely in the brain, and thus the physiological role of orexins is likely to be complex. Here we describe an investigation of the action of orexin A in modulating the arousal state of rats by using a combination of tissue localization and electrophysiological and behavioral techniques. We show that the brain region receiving the densest innervation from orexinergic nerves is the locus coeruleus, a key modulator of attentional state, where application of orexin A increases cell firing of intrinsic noradrenergic neurones. Orexin A increases arousal and locomotor activity and modulates neuroendocrine function. The data suggest that orexin A plays an important role in orchestrating the sleep-wake cycle.Since the discovery of the orexins (1) investigations of their functions have been guided by evidence for their hypothalamic distribution (1, 2), focusing on feeding, energy homeostasis (1, 3), and neurocrine functions (3). Our studies now show the presence of orexin A immunoreactive fibers and varicosities in extrahypothalamic areas, particularly the locus coeruleus, and demonstrate that the functions of orexin A extend beyond the hypothalamus.Orexin A and B are derived from a 130-aa precursor, prepro-orexin, which is encoded by a gene localized to human chromosome 17q21 (1). Prepro-orexin, or preprohypocretin (2), was identified in the rat hypothalamus by directional tag PCR subtractive hybridization (2) and has been shown by Northern blot analysis to be abundant in the brain and detectable at low levels in testes but not in a variety of other tissues (1, 2). Hypocretins had been identified as hypothalamic neuropeptides, but their biological role was not described (2). Nucleotide sequence alignment shows that hypocretins 1 and 2 have sequence in common with orexins A and B, respectively, but additional amino acids are present in both hypocretins. In situ hybridization maps confirm dense prepro-orexin mRNA expression in the hypothalamus (1, 2). Immunocytochemical mapping of orexin A has identified a population of mediumsized neurones within the hypothalamus, median eminence (3), and ventral thalamic nuclei of rat brain (1, 3). This distribution has been confirmed in human tissue (4).Orexin A binds with high affinity to the novel G proteincoupled receptors orexin 1 (OX 1 ) (IC 50 20 nM) and orexin 2 (OX 2 ) (IC 50 38 nM). Calcium mobilization assays in transfected HEK293 cells confirm that orexin A is a potent agonist at both OX 1 (EC 50 30 nM) and OX 2 (EC 50 34 nM) (1). Emerging evidence suggests the existence of an extensive extrahypothalamic projection of orexin-immunoreactive neurones. Peyron et al. (5), in addition to confirming the presence of immunoreactive cell somata within the hypothalamus, reported immunolabeled fibers throughout extrahypothalamic regions, including septal nuclei, substantia nigra, and raphe nucle...
A novel inhibitor of receptor-mediated calcium entry (RMCE) is described. SK&F 96365 (1-(beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H- imidazole hydrochloride) is structurally distinct from the known 'calcium antagonists' and shows selectivity in blocking RMCE compared with receptor-mediated internal Ca2+ release. Human platelets, neutrophils and endothelial cells were loaded with the fluorescent Ca2(+)-indicator dyes quin2 or fura-2, in order to measure Ca2+ or Mn2+ entry through RMCE as well as Ca2+ release from internal stores. The IC50 (concn. producing 50% inhibition) for inhibition of RMCE by SK&F 96365 in platelets stimulated with ADP or thrombin was 8.5 microM or 11.7 microM respectively; these concentrations of SK&F 96365 did not affect internal Ca2+ release. Similar effects of SK&F 96365 were observed in suspensions of neutrophils and in single endothelial cells. SK&F 96365 also inhibited agonist-stimulated Mn2+ entry in platelets and neutrophils. The effects of SK&F 96365 were independent of cell type and of agonist, as would be expected for a compound that modulates post-receptor events. Voltage-gated Ca2+ entry in fura-2-loaded GH3 (pituitary) cells and rabbit ear-artery smooth-muscle cells held under voltage-clamp was also inhibited by SK&F 96365; however, the ATP-gated Ca2(+)-permeable channel of rabbit ear-artery smooth-muscle cells was unaffected by SK&F 96365. Thus SK&F 96365 (unlike the 'organic Ca2+ antagonists') shows no selectivity between voltage-gated Ca2+ entry and RMCE, although the lack of effect on ATP-gated channels indicates that it discriminates between different types of RMCE. The effects of SK&F 96365 on functional responses of cells thought to be dependent on Ca2+ entry via RMCE were also studied. Under conditions where platelet aggregation is dependent on stimulated Ca2+ entry via RMCE, the response was blocked by SK&F 96365 with an IC50 of 15.9 microM, which is similar to the IC50 of 8-12 microM observed for inhibition of RMCE. Adhesion and chemotaxis of neutrophils were also inhibited by SK&F 96365. SK&F 96365 is a useful tool to distinguish RMCE from internal Ca2+ release, and to probe the role of RMCE in mediating functional responses of cells. However, SK&F 96365 is not as potent (IC50 around 10 microM) or selective (also inhibits voltage-gated Ca2+ entry) as would be desirable, so caution must be exercised when using this compound.
We have studied activation by phorbol derivatives of TRPV4 channels, the human VRL-2, and murine TRP12 channels, which are highly homologous to the human VR-OAC, and the human and murine OTRPC4 channel. ] i inhibits the channel with an IC 50 of 406 nM. Ruthenium Red at a concentration of 1 M completely blocks inward currents at ؊80 mV but has a smaller effect on outward currents likely indicating a voltage dependent channel block. We concluded that the phorbol derivatives activate TRPV4 (VR-OAC, VRL-2, OTRPC4, TRP12) independently from protein kinase C, in a manner consistent with direct agonist gating of the channel.
We have compared activation by heat of TRPV4 channels, heterogeneously expressed in HEK293 cells, and endogenous channels in mouse aorta endothelium (MAEC). Increasing the temperature above 25°C activated currents and increased [Ca 2؉ ] i in HEK293 cells transfected with TRPV4 and in MAEC. When compared with activation of TRPV4 currents by the selective ligand 4␣PDD (␣-phorbol 12,13-didecanoate), heat-activated currents in both systems showed the typical biophysical properties of currents through TRPV4, including their single channel conductance. Deletion of the three N-terminal ankyrin binding domains of TRPV4 abolished current activation cells by heat in HEK293. In inside-out patches, TRPV4 could not be activated by heat but still responded to the ligand 4␣PDD. In MAEC, the same channel is activated under identical conditions as in the HEK expression system. Our data indicate that TRPV4 is a functional temperature-sensing channel in native endothelium, that is likely involved in temperature-dependent Ca 2؉ signaling. The failure to activate TRPV4 channels by heat in inside-out patches, which responded to 4␣PDD, may indicate that heat activation depends on the presence of an endogenous ligand, which is missing in inside-out patches.Sensing of temperature in the body and the environment is one of the most essential mechanisms for controlling the homeostasis of several regulatory pathways in the mammalian body (1). In recent years, unraveling of thermosensing mechanisms has been very successful, because at least four members of the TRPV subfamily of transient receptor potential cation channels, TRPV 1 1, -2, -3, and -4 and a more distantly related protein TRPM8 have been identified (for a unified nomenclature see Refs. 2 and 3) as sensors of temperature. Proteins of this subfamily typically contain 3-6 ankyrin repeats in the N terminus, and six transmembrane segments with a pore region between segments 5 and 6. The first identified non-mammalian member of this subfamily, the Caenorhabditis elegans OSM-9 channel, is activated by changes in osmolarity (4). The second protein of the TRPV family that has been identified is the mammalian vanilloid receptor channel VR1 (TRPV1), which is activated by vanilloid compounds such as capsaicin, pepper, hot chili, moderate heat, or protons (5). Unlike TRPV1, another close relative of this channel, TRPV2, is constitutively activated by growth factors (6) or by noxious heat (7). TRPV1 and TRPV2 are activated by temperatures above 43 and 52°C, respectively (5, 7). Currents through TRPV3 exponentially increase at temperatures above 35°C (8 -10). It has also been shown in current measurements on oocytes and by cytoplasmic Ca 2ϩ ([Ca 2ϩ ] i) measurements in HEK cells that TRPV4 is activated in both expression systems at temperature above 30°C (11). TRPM8 is activated by temperatures below 22°C and is therefore a candidate for cold reception (12, 13).So far, the molecular mechanism of channel activation by heat for any of these channels is not known, and functional measurements of ...
Receptor-operated Ca2+ entry has been proposed as a signalling mechanism in many cells. Receptor-operated Ca2+ channels (ROCs) were first postulated in smooth muscle by Bolton, van Breemen and Somlyo and Somlyo, but recordings of directly ligand-gated Ca2+ current are lacking. Here we describe receptor-operated Ca2+ current evoked in arterial smooth muscle cells by ATP, a sympathetic neurotransmitter. ATP activates channels with approximately 3:1 selectivity for Ca2+ over Na+ at near-physiological concentrations and with a unitary conductance of approximately 5 pS in 110 mM Ca2+ or Ba2+. The channels can be opened even at very negative potentials and resist inhibition by cadmium or nifedipine, unlike voltage-gated Ca2+ channels; they are not blocked by Mg2+, unlike NMDA (N-methyl-D-aspartate)-activated channels; they are directly activated by ligand, without involvement of readily diffusible second messengers, unlike cation channels in neutrophils and T lymphocytes. Thus, the ATP-activated channels provide a distinct mechanism for excitatory synaptic current and Ca2+ entry in smooth muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.