We report a solid-state, nanofiber-based optical sensor for detecting proteins with an anionic fluorescent dendrimer (AFD). The AFD was encapsulated in cellulose acetate (CA) electrospun nanofibers, which were deacetylated to cellulose to generate secondary porous structures that are desirable for enhancing molecular interactions, and thus better signaling. The protein sensing properties of the fibers were characterized by monitoring the fluorescence response of cytochrome c (cyt c), hemoglobin (Hgb), and bovine serum albumin (BSA) as a function of concentration. Effective quenching was observed for the metalloproteins, cyt c and Hgb. The effect was primarily due to energy transfer of the imbedded fluorescent dendrimers to the protein, as both proteins contain heme portions. Electron transfer, caused through the electrostatic effects in the binding of the anionic dendrimer to the positive patches of globular proteins, could be responsible as well. BSA, on the other hand, triggered a "turn-on" response in fluorescence, suggesting the negatively charged BSA reduces the pi-pi stacking of the partially dispersed, negatively charged dendritic fluorophores through repulsion forces, which results in an increase in fluorescence. Stern-Volmer constants (K(sv)) of the electrospun fibers were found to be 3.4 x 10(5) and 1.7 x 10(6) M(-1) for cyt c and Hgb, respectively. The reusability of the nanofibers is excellent: the nanofibers demonstrated less than 15% change of fluorescence intensity signal in a 5-cycle test.
Optical sensors capable of colorimetric visualization and/or fluorescence detection have shown tremendous potential for field technicians and emergency responders, owing to the portability and low cost of such devices. Polydiacetylene (PDA)-enhanced nanofibers are particularly promising due to high surface area, facile functionalization, simple construction, and the versatility to empower either colorimetric or fluorescence signaling. We demonstrate here a dual-mode optical sensing with electrospun nanofibers embedded with various PDAs. The solvent-dependent fluorescent transition of nanofibers generated a pattern that successfully distinguished four common organic solvents. The colorimetric and fluorescent sensing of biotin-avidin interactions by embedding biotinylated-PCDA monomers into silica-reinforced nanofiber mats were realized for detection of biomolecules. Finally, a PDA-based nanofiber sensor array consisting of three monomers has been fabricated for the determination and identification of organic amine vapors using colorimetry and principal component analysis (PCA). The combination of PCA and the strategy of probing analytes in two different concentration ranges (ppm and ppth) led to successful analysis of all eight amines.
This work investigates the use of ozone as a post-treatment of ALD-grown MnO and as a coreactant with bis(ethylcyclopentadienyl)manganese (Mn(EtCp)2) in ALD-like film growth. In situ quartz crystal microbalance measurements are used to monitor the mass changes during growth, which are coupled with ex situ materials characterization following deposition to evaluate the resulting film composition and structure. We determined that during O3 post-treatment of ALD-grown MnO, O3 oxidizes the near-surface region corresponding to a conversion of 22 Å of the MnO film to MnO2. Following oxidation by O3, exposure of Mn(EtCp)2 results in mass gains of over 300 ng/cm(2), which exceeds the expected mass gain for reaction of the Mn(EtCp)2 precursor with surface hydroxyls by over four times. We attribute this high mass gain to adsorbed Mn(EtCp)2 shedding its EtCp ligands at the surface and releasing Mn(II) ions which subsequently diffuse into the bulk film and partially reduce the oxidized film back to MnO. These Mn(EtCp)2 and O3 reactions are combined in sequential steps with (a) Mn(EtCp)2 reacting at the surface of an O-rich layer, shedding its two EtCp ligands and freeing Mn(II) to diffuse into the film followed by (b) O3 oxidizing the film surface and withdrawing Mn from the subsurface to create an O-rich layer. This deposition process results in self-limiting multilayer deposition of crystalline Mn5O8 films with a density of 4.7 g/cm(3) and an anomalously high growth rate of 5.7 Å/cycle. Mn5O8 is a metastable phase of manganese oxide which possesses an intermediate composition between the alternating MnO and MnO2 compositions of the near-surface during the Mn(EtCp)2 and O3 exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.