Targeted genomic manipulation by Cas9 can efficiently generate knockout cells and organisms via error-prone nonhomologous end joining (NHEJ), but the efficiency of precise sequence replacement by homology-directed repair (HDR) is substantially lower. Here we investigate the interaction of Cas9 with target DNA and use our findings to improve HDR efficiency. We show that dissociation of Cas9 from double-stranded DNA (dsDNA) substrates is slow (lifetime ∼6 h) but that, before complete dissociation, Cas9 asymmetrically releases the 3' end of the cleaved DNA strand that is not complementary to the sgRNA (nontarget strand). By rationally designing single-stranded DNA (ssDNA) donors of the optimal length complementary to the strand that is released first, we increase the rate of HDR in human cells when using Cas9 or nickase variants to up to 60%. We also demonstrate HDR rates of up to 0.7% using a catalytically inactive Cas9 mutant (dCas9), which binds DNA without cleaving it.
CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.