Extracellular functions of the endoplasmic reticulum chaperone protein calreticulin (CRT) are emerging. Here we show novel roles for exogenous CRT in both cutaneous wound healing and diverse processes associated with repair. Compared with platelet-derived growth factor-BB-treated controls, topical application of CRT to porcine excisional wounds enhanced the rate of wound re-epithelialization. In both normal and steroid-impaired pigs, CRT increased granulation tissue formation. Immunohistochemical analyses of the wounds 5 and 10 days after injury revealed marked up-regulation of transforming growth factor-3 (a key regulator of wound healing), a threefold increase in macrophage influx, and an increase in the cellular proliferation of basal keratinocytes of the new epidermis and of cells of the neodermis. In vitro studies confirmed that CRT induced a greater than twofold increase in the cellular proliferation of primary human keratinocytes, fibroblasts, and microvascular endothelial cells (with 100 pg/ml, 100 ng/ ml, and 1.0 pg/ml, respectively). Moreover, using a scratch plate assay, CRT maximally induced the cellular migration of keratinocytes and fibroblasts (with 10 pg/ml and 1 ng/ml, respectively). In addition, CRT induced concentration-dependent migration of keratinocytes, fibroblasts macrophages, and monocytes in chamber assays. These in vitro bioactivities provide mechanistic support for the positive biological effects of CRT observed on both the epidermis and dermis of wounds in vivo, underscoring a significant role for
A serious consequence of diabetes mellitus is impaired wound healing, which largely resists treatment. We previously reported that topical application of calreticulin (CRT), an endoplasmic reticulum chaperone protein, markedly enhanced the rate and quality of wound healing in an experimental porcine model of cutaneous repair. Consistent with these in vivo effects, in vitro CRT induced the migration and proliferation of normal human cells critical to the wound healing process. These functions are particularly deficient in poor healing diabetic wounds. Using a genetically engineered diabetic mouse (db/db) in a full-thickness excisional wound healing model, we now show that topical application of CRT induces a statistically significant decrease in the time to complete wound closure compared with untreated wounds by 5.6 days (17.6 vs. 23.2). Quantitative analysis of the wounds shows that CRT increases the rate of reepithelialization at days 7 and 10 and increases the amount of granulation tissue at day 7 persisting to day 14. Furthermore, CRT treatment induces the regrowth of pigmented hair follicles observed on day 28. In vitro, fibroblasts isolated from diabetic compared with wild-type mouse skin and human fibroblasts cultured under hyperglycemic compared with normal glucose conditions proliferate and strongly migrate in response to CRT compared with untreated controls. The in vitro effects of CRT on these functions are consistent with CRT's potent effects on wound healing in the diabetic mouse. These studies implicate CRT as a potential powerful topical therapeutic agent for the treatment of diabetic and other chronic wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.