Abstract-Much recent research has been devoted to investigating algorithms for allocating virtual machines (VMs) to physical machines (PMs) in infrastructure clouds. Many such algorithms address distinct problems, such as initial placement, consolidation, or tradeoffs between honoring service-level agreements and constraining provider operating costs. Even where similar problems are addressed, each individual research team evaluates proposed algorithms under distinct conditions, using various techniques, often targeted to a small collection of VMs and PMs. In this paper, we describe an objective method that can be used to compare VMplacement algorithms in large clouds, covering tens of thousands of PMs and hundreds of thousands of VMs. We demonstrate our method by comparing 18 algorithms for initial VM placement in on-demand infrastructure clouds. We compare algorithms inspired by open-source code for infrastructure clouds, and by the online bin-packing literature.
Abstract:In large-scale grid systems with decentralized control, the interactions of many service providers and consumers will likely lead to emergent global system behaviors that result in unpredictable, often detrimental, outcomes. This possibility argues for developing analytical tools to allow understanding, and prediction, of complex system behavior in order to ensure availability and reliability of grid computing services. This paper presents an approach for using piece-wise homogeneous Discrete Time Markov chains to provide rapid, potentially scalable, simulation of large-scale grid systems. This approach, previously used in other domains, is used here to model dynamics of largescale grid systems. A Markov chain model of a grid system is first represented in a reduced, compact form. This model can then be perturbed to produce alternative system execution paths and identify scenarios in which system performance is likely to degrade or anomalous behaviors occur. The expeditious generation of these scenarios allows prediction of how a larger system will react to failures or high stress conditions. Though computational effort increases in proportion to the number of paths modelled, this cost is shown to be far less than the cost of using detailed simulation or testbeds. Moreover, cost is unaffected by size of system being modelled, expressed in terms of workload and number of computational resources, and is adaptable to systems that are non-homogenous with respect to time. The paper provides detailed examples of the application of this approach and discusses future work. 6 7
cdabrowski@nist.gov SUMMARYIn recent years, grid technology has emerged as an important tool for solving computeintensive problems within the scientific community and in industry. To further the development and adoption of this technology, researchers and practitioners from different disciplines have collaborated to produce standard specifications for implementing largescale, interoperable grid systems. The focus of this activity has been the Open Grid Forum, but other standards development organizations have also produced specifications that are used in grid systems. To date, these specifications have provided the basis for a growing number of operational grid systems used in scientific and industrial applications. However, if the growth of grid technology is to continue, it will be important that grid systems also provide high reliability. In particular, it will be critical to ensure that grid systems are reliable as they continue to grow in scale, exhibit greater dynamism, and become more heterogeneous in composition. Ensuring grid system reliability in turn requires that the specifications used to build these systems fully support reliable grid services. This study surveys work on grid reliability that has been done in recent years and reviews progress made toward achieving these goals. The survey identifies important issues and problems that researchers are working to overcome in order to develop reliability methods for large-scale, heterogeneous, dynamic environments. The survey also illuminates reliability issues relating to standard specifications used in grid systems, identifying existing specifications that may need to be evolved and areas where new specifications are needed to better support reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.