A self-energy-functional approach is applied to construct cluster approximations for correlated lattice models. It turns out that the cluster-perturbation theory [Phys. Rev. Lett. 84, 522 (2000)]] and the cellular dynamical mean-field theory [Phys. Rev. Lett. 87, 186401 (2001)]] are limiting cases of a more general cluster method. The results for the one-dimensional Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom, and cluster size.
Based on the self-energy-functional approach proposed recently [M. Potthoff, Eur. Phys. J. B 32, 429 (2003)], we present an extension of the cluster-perturbation theory to systems with spontaneously broken symmetry. Our method applies to models with local interactions and accounts for both short-range correlations and long-range order. Short-range correlations are accurately taken into account via exact diagonalization of finite clusters. Long-range order is described by variational optimization of a ficticious symmetry-breaking field. In comparison with related cluster methods, our approach is more flexible and, for a given cluster size, less demanding numerically, especially at zero temperature. An application of the method to the antiferromagnetic phase of the Hubbard model at half-filling shows good agreement with results from quantum Monte-Carlo calculations. We demonstrate that the variational extension of the cluster-perturbation theory is crucial to reproduce salient features of the single-particle spectrum.
Here and elsewhere, certain product names may be the property of their respective third parties.xxii ■ IntroduCtIon
Use Interprocedural OptimizationAdd the compiler flag -ipo to switch on interprocedural optimization. This will give the compiler a holistic view of the program and open more optimization opportunities for the program as a whole. Note that this will also increase the overall compilation time.Runtime profiling can also increase the chances for the compiler to generate better code. Profile-guided optimization requires a three-stage process. First, compile the application with the compiler flag -prof-gen to instrument the application with profiling code. Second, run the instrumented application with a typical dataset to produce a meaningful profile. Third, feed the compiler with the profile (-prof-use) and let it optimize the code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.