Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings.
, and UDP glucose-flavonoid 3-o-glucosyl transferase [UFCT]) was determined. I n flowers and grape berry skins, expression of all of the genes, except UFCT, was detected up to 4 weeks postflowering, followed by a reduction in this expression 6 to 8 weeks postflowering. Expression of CHS, CHI, F3H, DFR, LDOX, and UFCT then increased 1 O weeks postflowering, coinciding with the onset of anthocyanin synthesis. I n grape berry flesh, no PAL or UFCT expression was detected at any stage of development, but CHS, CHI, F3H, DFR, and LDOX were expressed up to 4 weeks postflowering. These results indicate that the onset of anthocyanin synthesis in ripening grape berry skins coincides with a coordinated increase in expression of a number of genes in the anthocyanin biosynthetic pathway, suggesting the involvement of regulatory genes. UFCT is regulated independently of the other genes, suggesting that in grapes the major control point in this pathway is later than that observed in maize, petunia, and snapdragon.
Background: Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST) that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression.
Fruit ripening is a unique plant developmental process with direct implications for our food supply, nutrition, and health. In contrast to climacteric fruit, where ethylene is pivotal, the hormonal control of ripening in nonclimacteric fruit, such as grape (Vitis vinifera), is poorly understood. Brassinosteroids (BRs) are steroidal hormones, essential for normal plant growth and development but not previously implicated in the ripening of nonclimacteric fruit. Here we show that increases in endogenous BR levels, but not indole-3-acetic acid (IAA) or GA levels, are associated with ripening in grapes. Putative grape homologs of genes encoding BR biosynthesis enzymes (BRASSINOSTEROID-6-OXIDASE and DWARF1) and the BR receptor (BRASSINOSTEROID INSENSITIVE 1) were isolated, and the function of the grape BRASSINOSTEROID-6-OXIDASE gene was confirmed by transgenic complementation of the tomato (Lycopersicon esculentum) extreme dwarf (d x /d x ) mutant. Expression analysis of these genes during berry development revealed transcript accumulation patterns that were consistent with a dramatic increase in endogenous BR levels observed at the onset of fruit ripening. Furthermore, we show that application of BRs to grape berries significantly promoted ripening, while brassinazole, an inhibitor of BR biosynthesis, significantly delayed fruit ripening. These results provide evidence that changes in endogenous BR levels influence this key developmental process. This may provide a significant insight into the mechanism controlling ripening in grapes, which has direct implications for the logistics of grape production and down-stream processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.