Recent progress in the measurement of surface reflectance has created a demand for non-parametric appearance representations that are accurate, compact, and easy to use for rendering. Another crucial goal, which has so far received little attention, is editability: for practical use, we must be able to change both the directional and spatial behavior of surface reflectance (e.g., making one material shinier, another more anisotropic, and changing the spatial "texture maps" indicating where each material appears). We introduce an Inverse Shade Tree framework that provides a general approach to estimating the "leaves" of a user-specified shade tree from highdimensional measured datasets of appearance. These leaves are sampled 1-and 2-dimensional functions that capture both the directional behavior of individual materials and their spatial mixing patterns. In order to compute these shade trees automatically, we map the problem to matrix factorization and introduce a flexible new algorithm that allows for constraints such as non-negativity, sparsity, and energy conservation. Although we cannot infer every type of shade tree, we demonstrate the ability to reduce multigigabyte measured datasets of the Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) into a compact representation that may be edited in real time.
The problem of noise in Monte-Carlo rendering arising from estimator variance is well-known and well-studied. In this work, we concentrate on identifying individual light paths as outliers that lead to significant spikes of noise and represent a challenge for existing filtering methods. Most noise-reduction methods, such as importance sampling and stratification, attempt to generate samples that are expected a priori to have lower variance, but do not take into account actual sample values. While these methods are essential to decrease overall noise, we show that filtering samples a posteriori allows for greater reduction of spiked noise. In particular, given evaluated sample values, outliers can be identified and removed. Conforming with conventions in statistics, we emphasize that the term "outlier" should not be taken as synonymous with "incorrect", but as referring to samples that distort the empirically-observed distribution of energy relative to the true underlying distribution. By expressing a path distribution in joint image and color space, we show how outliers can be characterized by their density across the set of all nearby paths in this space. We show that removing these outliers leads to significant improvements in rendering quality.Original Renderings Renderings after Outlier Rejection, k = 50 Figure 1: The standard linear reconstruction of these two renderings leads to significant peaks of noise, a result of outlying samples. We propose a method to identify and remove these outliers, leading to a significant reduction in perceptual noise. Importantly, just the noise samples are targeted by the filtering, while other salient features are left unmodified.
Recent advances in real-time rendering have allowed the GPU implementation of traditionally CPU-restricted algorithms, often with performance increases of an order of magnitude or greater. Such gains are achieved by leveraging the large-scale parallelism of the GPU towards applications that are well-suited for these streaming architectures. By contrast, mesh simplification has traditionally been viewed as a non-interactive process not readily amenable to GPU acceleration. We demonstrate how it becomes practical for real-time use through our method, and that the use of the GPU even for offline simplification leads to significant increases in performance. Our approach for mesh decimation adopts a vertexclustering method to the GPU by taking advantage of a new addition to the rendering pipeline -the geometry shader stage. We present a novel general-purpose data structure designed for streaming architectures called the probabilistic octree, which allows for much of the flexibility of offline implementations, including sparse encoding and variable level-of-detail. We demonstrate successful use of this data structure in our GPU implementation of mesh simplification. We can generate adaptive levels of detail by applying non-linear warping functions to the cluster map in order to improve resulting simplification quality. Our GPU-accelerated approach enables simultaneous construction of multiple levels of detail and outof-core simplification of extremely large polygonal meshes.
Recent progress in the measurement of surface reflectance has created a demand for non-parametric appearance representations that are accurate, compact, and easy to use for rendering. Another crucial goal, which has so far received little attention, is editability: for practical use, we must be able to change both the directional and spatial behavior of surface reflectance (e.g., making one material shinier, another more anisotropic, and changing the spatial "texture maps" indicating where each material appears). We introduce an Inverse Shade Tree framework that provides a general approach to estimating the "leaves" of a user-specified shade tree from highdimensional measured datasets of appearance. These leaves are sampled 1-and 2-dimensional functions that capture both the directional behavior of individual materials and their spatial mixing patterns. In order to compute these shade trees automatically, we map the problem to matrix factorization and introduce a flexible new algorithm that allows for constraints such as non-negativity, sparsity, and energy conservation. Although we cannot infer every type of shade tree, we demonstrate the ability to reduce multigigabyte measured datasets of the Spatially-Varying Bidirectional Reflectance Distribution Function (SVBRDF) into a compact representation that may be edited in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.