For the first time, plutonium retention in human upper airways was investigated based on the dosimetric structure of the human respiratory tract proposed by the International Commission on Radiological Protection (ICRP). This paper describes analytical work methodology, case selection criteria, and summarizes findings on soluble (ICRP 68 Type M material) plutonium distribution in the lungs of a former nuclear worker occupationally exposed to plutonium nitrate [Pu(NO)]. Thirty-eight years post-intake, plutonium was found to be uniformly distributed between bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) dosimetric compartments as well as between the left and right lungs. Pu andPu total body activity was estimated to be 2333 ± 23 and 42.1 ± 0.7 Bq, respectively. The results of this work provide key information on the extent of plutonium binding in the upper airways of the human respiratory tract.
The long-term retention of inhaled soluble forms of plutonium raises concerns as to the potential health effects in persons working in nuclear energy or the nuclear weapons program. The distributions of long-term retained inhaled plutonium-nitrate [239Pu (NO3)4] deposited in the lungs of an accidentally exposed nuclear worker (Human Case 0269) and in the lungs of experimentally exposed beagle dogs with varying initial lung depositions were determined via autoradiographs of selected histologic lung, lymph node, trachea, and nasal turbinate tissue sections. These studies showed that both the human and dogs had a nonuniform distribution of plutonium throughout the lung tissue. Fibrotic scar tissue effectively encapsulated a portion of the plutonium and prevented its clearance from the body or translocation to other tissues and diminished dose to organ parenchyma Alpha radiation activity from deposited plutonium in Human Case 0269 was observed primarily along the subpleural regions while no alpha activity was seen in the tracheobronchial lymph nodes of this individual. However, relatively high activity levels in the tracheobronchial lymph nodes of the beagles indicated the lymphatic system was effective in clearing deposited plutonium from the lung tissues. In both the human case and beagle dogs, the appearance of retained plutonium within the respiratory tract was inconsistent with current biokinetic models of clearance for soluble forms of plutonium. Bound plutonium can have a marked effect on the dose to the lungs and subsequent radiation exposure has the potential to increase cancer risk.
The data suggests that FASLG, BCL2, CASP3 and apoptosis play a role in the inflammatory responses following prolonged plutonium exposure. Utilizing these unique tissues revealed which pathways are triggered following the internal deposition and long-term retention of plutonium-nitrate in a human and a large animal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.