Early assessments of the spreading rate of COVID-19 were subject to significant uncertainty, as expected with limited data and difficulties in case ascertainment, but more reliable inferences can now be made. Here, we estimate from European data that COVID-19 cases are expected to double initially every three days, until social distancing interventions slow this growth, and that the impact of such measures is typically only seen nine days -i.e. three doubling times -after their implementation. We argue that such temporal patterns are more critical than precise estimates of the basic reproduction number for initiating interventions. This observation has particular implications for the low-and middle-income countries currently in the early stages of their local epidemics.
Early assessments of the growth rate of COVID-19 were subject to significant uncertainty, as expected with limited data and difficulties in case ascertainment, but as cases were recorded in multiple countries, more robust inferences could be made. Using multiple countries, data streams and methods, we estimated that, when unconstrained, European COVID-19 confirmed cases doubled on average every 3 days (range 2.2–4.3 days) and Italian hospital and intensive care unit admissions every 2–3 days; values that are significantly lower than the 5–7 days dominating the early published literature. Furthermore, we showed that the impact of physical distancing interventions was typically not seen until at least 9 days after implementation, during which time confirmed cases could grow eightfold. We argue that such temporal patterns are more critical than precise estimates of the time-insensitive basic reproduction number R 0 for initiating interventions, and that the combination of fast growth and long detection delays explains the struggle in countries' outbreak response better than large values of R 0 alone. One year on from first reporting these results, reproduction numbers continue to dominate the media and public discourse, but robust estimates of unconstrained growth remain essential for planning worst-case scenarios, and detection delays are still key in informing the relaxation and re-implementation of interventions. This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.
The rapid emergence of SARS-CoV-2 mutants with new phenotypic properties is a critical challenge to the control of the ongoing pandemic. B.1.1.7 was monitored in the UK through routine testing and S-gene target failures (SGTF), comprising over 90% of cases by March 2021. Now, the reverse is occurring: SGTF cases are being replaced by an S-gene positive variant, which we associate with B.1.617.2. Evidence from the characteristics of S-gene positive cases demonstrates that, following importation, B.1.617.2 is transmitted locally, growing at a rate higher than B.1.1.7 and a doubling time between 5-14 days. S-gene positive cases should be prioritised for sequencing and aggressive control in any countries in which this variant is newly detected.One-Sentence SummaryThe B.1.617.2 variant of SARS-CoV-2 is replacing B.1.1.7 and emerging as the dominant variant in England, evidenced by sustained local transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.