Parasitic strategies are widely distributed in the plant kingdom and frequently involve coupling parasite organogenesis with cues from the host. In Striga asiatica, for example, the cues that initiate the development of the host attachment organ, the haustorium, originate in the host and trigger the transition from vegetative to parasitic mode in the root meristem. This system therefore offers a unique opportunity to study the signals and mechanisms that control plant cell morphogenesis. Here we establish that the biological activity of structural analogs of the natural inducer displays a marked dependence on redox potential and suggest the existence of a semiquinone intermediate. Building on chemistry that exploits the energetics of such an intermediate, cyclopropyl-p-benzoquinone (CPBQ) is shown to be a specific inhibitor of haustorial development. These data are consistent with a model where haustorial development is initiated by the completion of a redox circuit.
Striga asiatica (Scrophulariaceae), an obligate parasite of grasses including many of the world's major grain crops, switches from vegetative to parasitic development by the differentiation of the root meristem into the host attachment organ, the haustorium. This change was induced in culture by the exposure to a single, low molecular weight signal molecule, 2,6-dimethoxy-p-benzoquinone. A concentration of 10-6 molar quinone and an exposure time of >6 hours were required before the developmental process could be completed. With shorter exposure times, haustorial development was prematurely aborted and meristematic elongation was reestablished. The new meristem was capable of developing a second haustorium if reexposed to the signal molecule. These results are discussed in terms of the transition to the parasitic phase and the general control of plant cellular development.The initial gene expression events involved in the induction of both parasitic (7, 24) and symbiotic (14,19,20) relation-ships have been shown to be controlled in many cases by specific, structurally simple, signal molecules. These compounds must convey critical information required for host selection since, in most cases, the shift from a vegetative to a parasitic mode is both sudden and dramatic, requiring a significant recommitment of resources. The magnitude of this change is particularly striking in the parasitic angiosperms that are strictly dependent on the host for continued survival ( 15). In general, these plant holoparasites are dormant as seeds and apparently break dormancy only when exposed to a specific host-derived signal (10, 13). The change from the vegetative to a parasitic mode involved formation ofa primary haustorium, an organ specialized for host plant attachment.Several theories have been proposed for the mechanism of haustorial induction in parasitic plants, each generally involving haustorial inducing signals (2, 3, 8, 9, 12,17,26 suggests an active screening process on the part ofthe parasite and ensures intimate host-parasite association before the induction of haustoria.During primary haustorial induction, cellular expansion at the root meristem is redirected from longitudinal to radial dimensions followed closely by the formation of specialized haustorial hairs just distal to the swollen tip. The process is one of the most rapid differentiation processes known. Agalinis purpurea (Scrophulariaceae) has been shown to attach within 24 h following induction (22), and Striga attachment occurs at least as rapidly (8). Therefore, haustorial development is dependent to a large extent on cellular resources already present in the meristem. Nevertheless, the cost of this meristematic recommitment cannot be minimized. The redirection of meristematic growth results in a cessation of elongation. Therefore, host contact must be established for successful attachment (8, 9), and premature commitment to haustorial formation would certainly restrict the possibility of such contact. The importance of this differentiation event ...
Redβ is a component of the Red recombination system of bacteriophage λ that promotes a single strand annealing (SSA) reaction to generate end-to-end concatemers of the phage genome for packaging. Redβ interacts with λ exonuclease (λexo), the other component of the Red system, to form a "synaptosome" complex that somehow integrates the end resection and annealing steps of the reaction. Previous work using limited proteolysis and chemical modification revealed that Redβ consists of an N-terminal DNA binding domain, residues 1-177, and a flexible C-terminal "tail", residues 178-261. Here, we quantitatively compare the binding of the full-length protein (Redβ(FL)) and the N-terminal domain (Redβ(177)) to different lengths of ssDNA substrate and annealed duplex product. We find that in general, Redβ(FL) binds more tightly to annealed duplex product than to ssDNA substrate, while Redβ(177) binds more tightly to ssDNA. In addition, the C-terminal region of Redβ corresponding to residues 182-261 was purified and found to fold into an α-helical domain that is required for the interaction with λexo to form the synaptosome complex. Deletion analysis of Redβ revealed that removal of just eleven residues from the C-terminus disrupts the interaction with λexo as well as ssDNA and dsDNA recombination in vivo. By contrast, the determinants for self-oligomerization of Redβ appear to reside solely within the N-terminal domain. The subtle but significant differences in the relative binding of Redβ(FL) and Redβ(177) to ssDNA substrate and annealed duplex product may be important for Redβ to function as a SSA protein in vivo.
Escherichia coli Exonuclease I (ExoI) digests single-stranded DNA (ssDNA) in the 3′-5′ direction in a highly processive manner. The crystal structure of ExoI, determined previously in the absence of DNA, revealed a C-shaped molecule with three domains that form a central positively charged groove. The active site is at the bottom of the groove, while an extended loop, proposed to encircle the DNA, crosses over the groove. Here, we present crystal structures of ExoI in complex with four different ssDNA substrates. The structures all have the ssDNA bound in essentially the predicted manner, with the 3′-end in the active site and the downstream end under the crossover loop. The central nucleotides of the DNA form a prominent bulge that contacts the SH3-like domain, while the nucleotides at the downstream end of the DNA form extensive interactions with an ‘anchor’ site. Seven of the complexes are similar to one another, but one has the ssDNA bound in a distinct conformation. The highest-resolution structure, determined at 1.95 Å, reveals an Mg2+ ion bound to the scissile phosphate in a position corresponding to MgB in related two-metal nucleases. The structures provide new insights into the mechanism of processive digestion that will be discussed.
Redβ is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redβ forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redβ in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redβ forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redβ in cells active for recombination and find it to range from 7 to 27 μM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.