Peroxy radicals formed by the autoxidation of styrene react with 4-tert-butylcatechol (TBC) to give a tert-butylsemiquinone radical. When the TBC radical is generated in the presence of a 2,6-di-tert-butyl-7-substituted quinone methide (QM), the result is o-TBC addition at the 7-position of the QM. The effects of TBC/QM addition are observed during styrene polymerization retarder testing under aerobic conditions for 2-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)acetonitrile (QM-CN), 2,6-di-tertbutyl-4-(methoxymethylene)cyclohexa-2,5-dienone (QM-OMe), and 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dienone (QM-Ph). Increasing the concentrations of QM-Ph and TBC during aerobic batch styrene polymerization allowed for silica gel chromatography isolation of 5-(tert-butyl)-3-((3,5-di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl)benzene-1,2-diol, a novel compound. Radicals generated by the autoxidation of cumene and by homolysis of dicumylperoxide also activate TBC/QM addition. TBC/QM interaction causes a reduction in the performance of QMs as styrene polymerization retarders under aerobic conditions. Under anaerobic test conditions, a better simulation of industrial styrene purification, the TBC/QM interaction leads to only minimal reduction in retarder performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.