ObjectSimulation has become an important tool in neurosurgical education as part of the complex process of improving residents' technical expertise while preserving patient safety. Although different simulators have already been designed for a variety of neurosurgical procedures, spine simulators are still in their infancy and, at present, there is no available simulator for lumbar spine pathologies in pediatric neurosurgery. In this paper the authors describe the peculiarities and challenges involved in developing a synthetic simulator for pediatric lumbar spine pathologies, including tethered spinal cord syndrome and open neural tube defects.MethodsThe Department of Neurosurgery of the University of Illinois at Peoria, in a joint program with the Mechanical Engineering Department of Bradley University, designed and developed a general synthetic model for simulating pediatric neurosurgical interventions on the lumbar spine. The model was designed to be composed of several sequential layers, so that each layer might closely mimic the tensile properties of the natural tissues under simulation. Additionally, a system for pressure monitoring was developed to enable precise measurements of the degree of manipulation of the spinal cord.ResultsThe designed prototype successfully simulated several scenarios commonly found in pediatric neurosurgery, such as tethered spinal cord, retethered spinal cord, and fatty terminal filum, as well as meningocele, myelomeningocele, and lipomyelomeningocele. Additionally, the formulated grading system was able to account for several variables involved in the qualitative evaluation of the technical performance during the training sessions and, in association with an expert qualitative analysis of the recorded sessions, proved to be a useful feedback tool for the trainees.ConclusionsDesigning and building a synthetic simulator for pediatric lumbar spine pathologies poses a wide variety of unique challenges. According to the authors' experience, a modular system composed of separable layers that can be independently replaced significantly enhances the applicability of such a model, enabling its individualization to distinctive but interrelated pathologies. Moreover, the design of a system for pressure monitoring (as well as a general score that may be able to account for the overall technical quality of the trainee's performance) may further enhance the educational applications of a simulator of this kind so that it can be further incorporated into the neurosurgical residency curriculum for training and evaluation purposes.
Background
PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday.
Results
ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR.
Conclusions
ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.