Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
We present a new algorithm, prioritized sweeping, for efficient prediction and control of stochastic Markov systems. Incremental learning methods such as temporal differencing and Q-learning have real-time performance. Classical methods are slower, but more accurate, because they make full use of the observations. Prioritized sweeping aims for the best of both worlds. It uses all previous experiences both to prioritize important dynamic programming sweeps and to guide the exploration of state-space. We compare prioritized sweeping with other reinforcement learning schemes for a number of different stochastic optimal control problems. It successfully solves large state-space real-time problems with which other methods have difficulty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.