Many cancers feature cellular hierarchies that are driven by tumor-initiating, cancer stem cells (CSCs) and rely on complex interactions with the tumor microenvironment. Standard cell culture conditions fail to recapitulate the original tumor architecture or microenvironmental gradients, and are not designed to retain the cellular heterogeneity of parental tumors. Here, we describe a three-dimensional culture system that supports the long-term growth and expansion of tumor organoids derived directly from glioblastoma specimens, including patient-derived primary cultures, xenografts, genetically engineered glioma models, or patient samples. Organoids derived from multiple regions of patient tumors retain selective tumorigenic potential. Furthermore, organoids could be established directly from brain metastases not typically amenable to in vitro culture. Once formed, tumor organoids grew for months and displayed regional heterogeneity with a rapidly dividing outer region of SOX2+, OLIG2+, and TLX+ cells surrounding a hypoxic core of primarily non-stem senescent cells and diffuse, quiescent CSCs. Notably, non-stem cells within organoids were sensitive to radiation therapy, whereas adjacent CSCs were radioresistant. Orthotopic transplantation of patient-derived organoids resulted in tumors displayed histological features, including single cell invasiveness, that were more representative of the parental tumor compared with those formed from patient-derived sphere cultures. In conclusion, we present a new ex vivo model in which phenotypically diverse stem and non-stem glioblastoma cell populations can be simultaneously cultured to explore new facets of microenvironmental influences and CSC biology.
Summary Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared to tissue-specific progenitors. Direct interrogation of iron uptake demonstrated CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin - two core iron regulators - to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, and on which CSCs have an epigenetically programmed, targetable dependence.
SUMMARY Genomic sequencing has driven precision-based oncology therapy; however, genetic drivers remain unknown or non-targetable for many malignancies, demanding alternative approaches to identify therapeutic leads. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated based on anatomical location – supratentorial region (ST) or posterior fossa (PF) – and further divided into distinct molecular subgroups that reflect differences in age of onset, gender predominance, and response to therapy1–3. The most common and aggressive subgroup, Posterior Fossa Ependymoma Group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations2. Conversely, Posterior Fossa Ependymoma Group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses yet favourable clinical outcomes1,3. Greater than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NFκB subunit RELA (ST-EPN-RELA), and less frequently involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1).1,3,4 Subependymomas, a distinct histologic variant, can also be found within the ST and PF compartments accounting for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE, respectively1. Here, we mapped active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts with the goal of identifying essential super enhancer associated genes on which tumour cells were dependent. Enhancer regions revealed putative oncogenes, molecular targets, and pathways, which when subjected to small molecule inhibitor or shRNA treatment, diminished proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers recalcitrant to therapeutic development because of their lack of known genetic drivers.
Zhu et al. show that the Zika virus, which has a tropism for fetal and adult neuroprogenitor cells, targets and kills cancer stem cells while leaving differentiated tumor cells relatively unaffected, providing a new potential oncolytic virus therapy in neuro-oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.