Understanding the control of the optical and plasmonic properties of unique nanosystems—gold nanostars—both experimentally and theoretically permits superior design and fabrication for biomedical applications. Here, we present a new, surfactant-free synthesis method of biocompatible gold nanostars with adjustable geometry such that the plasmon band can be tuned into the near-infrared region ‘tissue diagnostic window’, which is most suitable for in vivo imaging. Theoretical modelling was performed for multiple-branched 3D nanostars and yielded absorption spectra in good agreement with experimental results. The plasmon band shift was attributed to variations in branch aspect ratio, and the plasmon band intensifies with increasing branch number, branch length, and overall star size. Nanostars showed an extremely strong two-photon photoluminescence (TPL) process. The TPL imaging of wheat-germ agglutinin (WGA) functionalized nanostars on BT549 breast cancer cells and of PEGylated nanostars circulating in the vasculature, examined through a dorsal window chamber in vivo in laboratory mouse studies, demonstrated that gold nanostars can serve as an efficient contrast agent for biological imaging applications.
The controlled synthesis of high-yield gold nanostars of varying sizes, their characterization and use in surface-enhanced Raman scattering (SERS) measurements are reported for the first time. Gold nanostars ranging from 45 to 116-nm in size were synthesized in high-yield, physically modeled and optically characterized using transmission and scanning electron microscopy and UV-Visible absorption spectroscopy. The nanostar characterization involved both studying morphology evolution over time and size as a function of nucleation. The nanostars properties as substrates for SERS were investigated and compared with respect to size. As the overall star size increases, so does the core size, the number of branches and branch aspect ratio; the number of branch tips per star surface area decreases with increasing size. The stars become more inhomogeneous in shape, although their yield is high and overall size remains homogeneous. Variations in star size are also accompanied by shifts of the long plasmon band in the NIR region, which hints towards tuning capabilities that may be exploited in specific SERS applications. The measured SERS enhancement factors suggest an interesting correlation between nanostar size and SERS efficiencies, and were relatively consistent across different star samples, with the enhancement factor estimated as 5×10 3 averaged over the 52-nm nanostars for 633-nm excitation.
Gold nanostars offer unique plasmon properties that efficiently transduce photon energy into heat for photothermal therapy. Nanostars, with their small core size and multiple long thin branches, exhibit high absorption cross-sections that are tunable in the near-infrared region with relatively low scattering effect, making them efficient photothermal transducers. Here, we demonstrate particle tracking and photothermal ablation both in vitro and in vivo. Using SKBR3 breast cancer cells incubated with bare nanostars, we observed photothermal ablation within 5 minutes of irradiation (980-nm continuous-wave laser, 15 W/cm2). On a mouse injected systemically with PEGylated nanostars for 2 days, extravasation of nanostars was observed and localized photothermal ablation was demonstrated on a dorsal window chamber within 10 minutes of irradiation (785-nm continuous-wave laser, 1.1 W/cm2). These preliminary results of plasmon-enhanced localized hyperthermia are encouraging and have illustrated the potential of gold nanostars as efficient photothermal agents in cancer therapy.
Plasmonic gold nanostars offer a new platform for Surface-Enhanced Raman Scattering (SERS). However, due to the presence of organic surfactant on the nanoparticles, SERS characterization and application of nanostar ensembles in solution have been challenging. Here we applied our newly developed surfactant-free nanostars for SERS characterization and application. The SERS enhancement factors (EF) of silver spheres, gold spheres and nanostars of similar sizes and concentration were compared. Under 785 nm excitation, nanostars and silver spheres have similar EF, and both are much stronger than gold spheres. Having plasmon matching the incident energy and multiple “hot spots” on the branches bring forth strong SERS response without the need to aggregate. Intracellular detection of silica-coated SERS-encoded nanostars was also demonstrated in breast cancer cells. The non-aggregated field enhancement makes the gold nanostar ensemble a promising agent for SERS bioapplications.
The spatial and spectral responses of the plasmonic fields induced in the gap of 3-D Nanoshell Dimers of gold and silver are comprehensively investigated and compared via theory and simulation, using the Multipole Expansion (ME) and the Finite Element Method (FEM) in COMSOL, respectively. The E-field in the dimer gap was evaluated and compared as a function of shell thickness, inter-particle distance, and size. The E-field increased with decreasing shell thickness, decreasing interparticle distance, and increasing size, with the error between the two methods ranging from 1 to 10%, depending on the specific combination of these three variables. This error increases several fold with increasing dimer size, as the quasi-static approximation breaks down. A consistent overestimation of the plasmon’s FWHM and red-shifting of the plasmon peak occurs with FEM, relative to ME, and it increases with decreasing shell thickness and inter-particle distance. The size-effect that arises from surface scattering of electrons is addressed and shown to be especially prominent for thin shells, for which significant damping, broadening and shifting of the plasmon band is observed; the size-effect also affects large nanoshell dimers, depending on their relative shell thickness, but to a lesser extent. This study demonstrates that COMSOL is a promising simulation environment to quantitatively investigate nanoscale electromagnetics for the modeling and designing of Surface Enhanced Raman Scattering (SERS) substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.