This applied research paper introduces a novel framework for integrating hardware security and blockchain functionality with grid-edge devices to establish a distributed cyber-security mechanism that verifies the provenance of messages to and from the devices. Expanding the idea of Two Factor Authentication and Hardware Root of Trust, this work describes the development of a Cryptographic Trust Center TM (CTC TM ) chip integrated into grid-edge devices to create uniform cryptographic key management. Product managers, energy system designers, and security architects can utilize this modular framework as a unified approach to manage distributed devices of various vendors, vintages, and sizes. Results demonstrate the application of CTC TM to a blockchain-based Transactive Energy (TE) platform for provisioning of cryptographic keys and improved uniformity of the operational network and data management. This process of configuring, installing, and maintaining keys is described as Eco-Secure Provisioning TM (ESP TM ). Laboratory test results show the approach can resolve several cyber-security gaps in common blockchain frameworks such as Hyperledger Fabric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.