We present a methodology for identifying security critical properties for use in the dynamic verification of a processor. Such verification has been shown to be an effective way to prevent exploits of vulnerabilities in the processor, given a meaningful set of security properties. We use known processor errata to establish an initial set of security-critical invariants of the processor. We then use machine learning to infer an additional set of invariants that are not tied to any particular, known vulnerability, yet are critical to security. We build a tool chain implementing the approach and evaluate it for the open-source OR1200 RISC processor. We find that our tool can identify 19 (86.4%) of the 22 manually crafted security-critical properties from prior work and generates 3 new security properties not covered in prior work.
We present a methodology for identifying security critical properties for use in the dynamic verification of a processor. Such verification has been shown to be an effective way to prevent exploits of vulnerabilities in the processor, given a meaningful set of security properties. We use known processor errata to establish an initial set of security-critical invariants of the processor. We then use machine learning to infer an additional set of invariants that are not tied to any particular, known vulnerability, yet are critical to security.We build a tool chain implementing the approach and evaluate it for the open-source OR1200 RISC processor. We find that our tool can identify 19 (86.4%) of the 22 manually crafted security-critical properties from prior work and generates 3 new security properties not covered in prior work.
We present a methodology for identifying security critical properties for use in the dynamic verification of a processor. Such verification has been shown to be an effective way to prevent exploits of vulnerabilities in the processor, given a meaningful set of security properties. We use known processor errata to establish an initial set of security-critical invariants of the processor. We then use machine learning to infer an additional set of invariants that are not tied to any particular, known vulnerability, yet are critical to security. We build a tool chain implementing the approach and evaluate it for the open-source OR1200 RISC processor. We find that our tool can identify 19 (86.4%) of the 22 manually crafted security-critical properties from prior work and generates 3 new security properties not covered in prior work.
We present a methodology for identifying security critical properties for use in the dynamic verification of a processor. Such verification has been shown to be an effective way to prevent exploits of vulnerabilities in the processor, given a meaningful set of security properties. We use known processor errata to establish an initial set of security-critical invariants of the processor. We then use machine learning to infer an additional set of invariants that are not tied to any particular, known vulnerability, yet are critical to security. We build a tool chain implementing the approach and evaluate it for the open-source OR1200 RISC processor. We find that our tool can identify 19 (86.4%) of the 22 manually crafted security-critical properties from prior work and generates 3 new security properties not covered in prior work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.