A simple model of the temperature‐dependent biological decay of dissolved oil is embedded in an ocean‐climate model and used to simulate underwater plumes of dissolved and suspended oil originating from a point source in the northern Gulf of Mexico, with an upper‐bound supply rate estimated from the contemporary analysis of the Deepwater Horizon blowout. The behavior of plumes at different depths is found to be determined by the combination of sheared current strength and the vertical profile of decay rate. For all plume scenarios, toxic levels of dissolved oil remain confined to the northern Gulf of Mexico, and abate within weeks after the spill stops. An estimate of oxygen consumption due to microbial oxidation of hydrocarbons suggests that a deep plume of hydrocarbons could lead to localized regions of prolonged hypoxia near the source, but only when oxidation of methane is included.
Following the 2010 Deepwater Horizon accident of a massive blow-out in the Gulf of Mexico, scientists from government, industry, and academia collaborated to advance oil spill modeling and share best practices in model algorithms, parameterizations, and application protocols. This synergy was greatly enhanced by research funded under the Gulf of Mexico Research Initiative (GoMRI), a 10-year enterprise that allowed unprecedented collection of observations and data products, novel experiments, and international collaborations that focused on the Gulf of Mexico, but resulted in the generation of scientific findings and tools of broader value. Operational oil spill modeling greatly benefited from research during the GoMRI decade. This paper provides a comprehensive synthesis of the related scientific advances, remaining challenges, and future outlook. Two main modeling components are discussed: Ocean circulation and oil spill models, to provide details on all attributes that contribute to the success and limitations of the integrated oil spill forecasts. These forecasts are discussed in tandem with uncertainty factors and methods to mitigate them. The paper focuses on operational aspects of oil spill modeling and forecasting, including examples of international operational center practices, observational needs, communication protocols, and promising new methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.