A new method is presented for quantifying proteomic and metabolomic profile data by liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization. This biotechnology provides differential expression measurements and enables the discovery of biological markers (biomarkers). Work presented here uses human serum but is applicable to any fluid or tissue. The approach relies on linearity of signal versus molecular concentration and reproducibility of sample processing. There is no use of isotopic labeling or chemically similar standard materials. Linear standard curves are reported for a variety of compounds introduced into human serum. As a measure of analytical reproducibility for proteome and metabolome sampling, median coefficients of variation of 25.7 and 23.8%, respectively, were determined for approximately 3400 molecular ions (not counting their numerous isotopes) from 25 independently processed human serum samples, corresponding to a total of 85000 individual molecular ion measurements.
Byonic is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence, Byonic can search for tens or even hundreds of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic's Wildcard Search allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic's Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites. Curr. Protoc. Bioinform. 40:13.20.1‐13.20.14. © 2012 by John Wiley & Sons, Inc.
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by expansion of CAG triplet repeats in the huntingtin (HTT) gene (also called HD) and characterized by accumulation of aggregated fragments of polyglutamine-expanded HTT protein in affected neurons. Abnormal enrichment of HD inclusion bodies with ubiquitin, a diagnostic characteristic of HD and many other neurodegenerative disorders including Alzheimer's and Parkinson's diseases, has suggested that dysfunction in ubiquitin metabolism may contribute to the pathogenesis of these diseases. Because modification of proteins with polyubiquitin chains regulates many essential cellular processes including protein degradation, cell cycle, transcription, DNA repair and membrane trafficking, disrupted ubiquitin signalling is likely to have broad consequences for neuronal function and survival. Although ubiquitin-dependent protein degradation is impaired in cell-culture models of HD and of other neurodegenerative diseases, it has not been possible to evaluate the function of the ubiquitin-proteasome system (UPS) in HD patients or in animal models of the disease, and a functional role for UPS impairment in neurodegenerative disease pathogenesis remains controversial. Here we exploit a mass-spectrometry-based method to quantify polyubiquitin chains and demonstrate that the abundance of these chains is a faithful endogenous biomarker of UPS function. Lys 48-linked polyubiquitin chains accumulate early in pathogenesis in brains from the R6/2 transgenic mouse model of HD, from a knock-in model of HD and from human HD patients, establishing that UPS dysfunction is a consistent feature of HD pathology. Lys 63- and Lys 11-linked polyubiquitin chains, which are not typically associated with proteasomal targeting, also accumulate in the R6/2 mouse brain. Thus, HD is linked to global changes in the ubiquitin system to a much greater extent than previously recognized.
The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.
Here, complementary ion mobility/mass spectrometry (IM/MS) and ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS analyses of light, medium, and heavy petroleum crude oils yielded distributions of the heteroatom-containing hydrocarbons, as well as multiple conformational classes. The IM/MS technique provides unique fingerprints for fast identification of signature conformational/compositional patterns, whereas FTICR MS analysis provides comprehensive heteroatom class distributions. IM/MS and FTICR MS results reveal an increase in compositional complexity in proceeding from light to medium to heavy crude oils. Inspection of the mobility results shows a high structural diversity for the C(n)H(h)XY (XY = N(1), S(1), N(1), O(1), NS, SO(1-2), NO(1-2), etc.) series, as well as a shift from planar to more compact three-dimensional structures with increasing mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.