The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). (13)C/(12)C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than ∼40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.
The dietary and movement history of individual animals can be studied using stable isotope records in animal tissues, providing insight into long-term ecological dynamics and a species niche. We provide a 6-year history of elephant diet by examining tail hair collected from 4 elephants in the same social family unit in northern Kenya. Sequential measurements of carbon, nitrogen, and hydrogen isotope rations in hair provide a weekly record of diet and water resources. Carbon isotope ratios were well correlated with satellite-based measurements of the normalized difference vegetation index (NDVI) of the region occupied by the elephants as recorded by the global positioning system (GPS) movement record; the absolute amount of C4 grass consumption is well correlated with the maximum value of NDVI during individual wet seasons. Changes in hydrogen isotope ratios coincided very closely in time with seasonal fluctuations in rainfall and NDVI whereas diet shifts to relatively high proportions of grass lagged seasonal increases in NDVI by Ϸ2 weeks. The peak probability of conception in the population occurred Ϸ3 weeks after peak grazing. Spatial and temporal patterns of resource use show that the only period of pure browsing by the focal elephants was located in an over-grazed, communally managed region outside the protected area. The ability to extract time-specific longitudinal records on animal diets, and therefore the ecological history of an organism and its environment, provides an avenue for understanding the impact of climate dynamics and land-use change on animal foraging behavior and habitat relations.C4 photosynthesis ͉ carbon-13 ͉ stable isotopes ͉ wildlife conservation V ariation in temporal and spatial resource quality and abundance can have strong affects on animal ecology and community resource partitioning (1). In particular, changes in species composition and abundance at seasonal and longer time scales strongly influences diet and, as a result, community dynamics and the life history of animals (2, 3). Quantifying and dating fine scale foraging behaviors is difficult, typically causing foraging studies to focus on averages compiled from observations and measurements collected from multiple, and often unknown, individuals (e.g., refs. 4-6); such dietary data are difficult to relate to spatially or temporally explicit resource changes. Quantifying the long-term diets of a single individual requires continuous observation, often in the face of cryptic life stages or range shifts and seasonal migration. As such, detailed dietary monitoring through observations is intractable for many species, although the importance of quantifying climate or human mediated diet changes that many species are experiencing is more critical than ever (7). Recent developments in stable isotope ecology enable the derivation of temporally explicit diet records, offering a means by which foraging decisions and the effect of ecological shifts on species can be recorded and compared over time.Stable isotopes in animal tissues record...
Background and objectives Genetic engineering combined with CRISPR technology has developed to the point that gene drives can, in theory, be engineered to cause extinction in countless species. Success of extinction programs now rests on the possibility of resistance evolution, which is largely unknown. Depending on the gene-drive technology, resistance may take many forms, from mutations in the nuclease target sequence (e.g. for CRISPR) to specific types of non-random population structures that limit the drive (that may block potentially any gene-drive technology). Methodology We develop mathematical models of various deviations from random mating to consider escapes from extinction-causing gene drives. A main emphasis here is sib mating in the face of recessive-lethal and Y-chromosome drives. Results Sib mating easily evolves in response to both kinds of gene drives and maintains mean fitness above 0, with equilibrium fitness depending on the level of inbreeding depression. Environmental determination of sib mating (as might stem from population density crashes) can also maintain mean fitness above 0. A version of Maynard Smith’s haystack model shows that pre-existing population structure can enable drive-free subpopulations to be maintained against gene drives. Conclusions and implications Translation of mean fitness into population size depends on ecological details, so understanding mean fitness evolution and dynamics is merely the first step in predicting extinction. Nonetheless, these results point to possible escapes from gene-drive-mediated extinctions that lie beyond the control of genome engineering. Lay summary Recent gene drive technologies promise to suppress and even eradicate pests and disease vectors. Simple models of gene-drive evolution in structured populations show that extinction-causing gene drives can be thwarted both through the evolution of sib mating as well as from purely demographic processes that cluster drive-free individuals.
The obligate intracellular bacterial pathogen Chlamydia trachomatis is reliant on a developmental cycle consisting of two cell forms, termed the elementary body (EB) and the reticulate body (RB). The EB is infectious and utilizes a type III secretion system and preformed effector proteins during invasion, but it does not replicate. The RB replicates in the host cell but is noninfectious. This developmental cycle is central to chlamydial pathogenesis. In this study, we developed mathematical models of the developmental cycle that account for potential factors influencing RB-to-EB cell type switching during infection. Our models predicted that two categories of regulatory signals for RB-to-EB development could be differentiated experimentally, an “intrinsic” cell-autonomous program inherent to each RB and an “extrinsic” environmental signal to which RBs respond. To experimentally differentiate between mechanisms, we tracked the expression of C. trachomatis development-specific promoters in individual inclusions using fluorescent reporters and live-cell imaging. These experiments indicated that EB production was not influenced by increased multiplicity of infection or by superinfection, suggesting the cycle follows an intrinsic program that is not directly controlled by environmental factors. Additionally, live-cell imaging revealed that EB development is a multistep process linked to RB growth rate and cell division. The formation of EBs followed a progression with expression from the euo and ihtA promoters evident in RBs, while expression from the promoter for hctA was apparent in early EBs/IBs. Finally, expression from the promoters for the true late genes, hctB, scc2, and tarp, was evident in the maturing EB. IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterium that can cause trachoma, cervicitis, urethritis, salpingitis, and pelvic inflammatory disease. To establish infection in host cells, Chlamydia must complete a multiple-cell-type developmental cycle. The developmental cycle consists of specialized cells, the EB cell, which mediates infection of new host cells, and the RB cell, which replicates and eventually produces more EB cells to mediate the next round of infection. By developing and testing mathematical models to discriminate between two competing hypotheses for the nature of the signal controlling RB-to-EB cell type switching, we demonstrate that RB-to-EB development follows a cell-autonomous program that does not respond to environmental cues. Additionally, we show that RB-to-EB development is a function of chlamydial growth and division. This study serves to further our understanding of the chlamydial developmental cycle that is central to the bacterium’s pathogenesis.
Acetaminophen (APAP) is the leading cause of acute liver injury in the developed world. Timely administration of N-acetylcysteine (N-Ac) prevents the progression of serious liver injury and disease, whereas failure to administer N-Ac within a critical time frame allows disease progression and in the most severe cases may result in liver failure or death. In this situation, liver transplantation may be the only life-saving measure. Thus, the outcome of an APAP overdose depends on the size of the overdose and the time to first administration of N-Ac. We developed a system of differential equations to describe acute liver injury due to APAP overdose. The Model for Acetaminophen-induced Liver Damage (MALD) uses a patient's aspartate aminotransferase (AST), alanine aminotransferase (ALT), and international normalized ratio (INR) measurements on admission to estimate overdose amount, time elapsed since overdose, and outcome. The mathematical model was then tested on 53 patients from the University of Utah. With the addition of serum creatinine, eventual death was predicted with 100% sensitivity, 91% specificity, 67% positive predictive value (PPV), and 100% negative predictive value (NPV) in this retrospective study. Using only initial AST, ALT, and INR measurements, the model accurately predicted subsequent laboratory values for the majority of individual patients. This is the first dynamical rather than statistical approach to determine poor prognosis in patients with life-threatening liver disease due to APAP overdose. Conclusion: MALD provides a method to estimate overdose amount, time elapsed since overdose, and outcome from patient laboratory values commonly available on admission in cases of acute liver failure due to APAP overdose and should be validated in multicenter prospective evaluation. (HEPATOLOGY 2012;56:727-734)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.